Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 793-800    DOI: 10.3785/j.issn.1008-973X.2021.04.022
电气工程     
新型经颅磁刺激三层-8字形线圈的结构设计
熊慧(),景昭,刘近贞
1. 天津工业大学 电气工程及自动化学院,天津 300387
2. 天津工业大学 电工电能新技术天津市重点实验室,天津 300387
Structural design of novel three-layer figure-of-8 coil for transcranial magnetic stimulation
Hui XIONG(),Zhao JING,Jin-zhen LIU
1. School of Electrical Engineering and Automation, TIANGONG University, Tianjin 300387, China
2. Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy, TIANGONG University, Tianjin 300387, China
 全文: PDF(1112 KB)   HTML
摘要:

基于磁场的叠加与抵消,设计与优化具有特殊结构和电流方向的三层-8字形线圈. 利用COMSOL仿真软件,分析三层-8字形线圈尺寸和沿切线旋转角度的改变对刺激性能的影响,优化线圈结构. 与8字形线圈相比,优化后的三层-8字形线圈的刺激强度提高33.92%,聚焦性提高25.43%. 结果表明,在目标靶点处,优化后三层-8字形线圈具有更强的刺激强度和聚焦性,有效减弱对非目标区域的不良影响,保证TMS治疗的安全性. 通过刺激真实头部模型,验证优化后三层-8字形线圈的性能优势.

关键词: 经颅磁刺激三层-8字形线圈聚焦性刺激深度刺激强度    
Abstract:

A new three-layer figure-of-8 coil with the special structure and current direction was designed and optimized based on the superposition and cancellation of magnetic field. COMSOL simulation software was used to analyze the effects of the three-layer figure-of-8 coil with the changing of size and the rotation angle along the tangent line on the stimulation performance, and the coil structure was optimized. The stimulation intensity of the optimized three-layer figure-of-8 coil was increased by 33.92% and the focality was improved by 25.43% compared with figure-of-8 coil. Results show that the three-layer figure-of-8 coil has better stimulation intensity and focality at a certain target position. Then the adverse effects of non-target areas were greatly reduced, and the safety of TMS treatment was guaranteed. The performance advantages of the optimized three-layer-8-shaped coil were verified by stimulating the realistic head model.

Key words: transcranial magnetic stimulation    three-layer figure-of-8 coil    focality    stimulation depth    stimulation intensity
收稿日期: 2020-04-01 出版日期: 2021-05-07
CLC:  R 318  
基金资助: 国家自然科学基金资助项目(61871288);天津市高等学校创新团队培养计划资助项目(TD13-5036);天津市自然科学基金资助项目(18JCYBJC 90400,18JCQNJC84000)
作者简介: 熊慧(1978—),女,副教授,从事生物医学电磁学的研究. orcid.org/0000-0001-8940-5626. E-mail: xionghui@tiangong.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
熊慧
景昭
刘近贞

引用本文:

熊慧,景昭,刘近贞. 新型经颅磁刺激三层-8字形线圈的结构设计[J]. 浙江大学学报(工学版), 2021, 55(4): 793-800.

Hui XIONG,Zhao JING,Jin-zhen LIU. Structural design of novel three-layer figure-of-8 coil for transcranial magnetic stimulation. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 793-800.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.022        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/793

图 1  2层球头模型和刺激线圈
图 2  具有特殊电流方向和半径尺寸的三层-8字形线圈以及沿切线旋转的三类结构
线圈类型 参数
Ⅰ类 Routi=15.5 mm,routi = 27.5 mm
Ⅱ类 Routi=17.5 mm,routi = 25.5 mm
Ⅲ类 Routi=19.5 mm,routi = 23.5 mm
Ⅳ类 Routi =21.5 mm,routi = 21.5 mm
Ⅴ类 Routi =23.5 mm,routi =19.5 mm
Ⅵ类 Routi =25.5 mm,routi =17.5 mm
Ⅶ类 Routi =27.5 mm,routi =15.5 mm
表 1  改变外侧单元线圈外半径得到的7类线圈
线圈 Emax /(V·m?1 d1/2 /mm S1/2 /cm2
8字形线圈 167.74 18.38 14.820
双层-8字形线圈 189.33 16.34 12.845
三层-8字形线圈 172.98 14.12 9.925
表 2  3类不同线圈的仿真计算结果
图 3  最大感应电场强度与旋转角度θ、半径的关系
图 4  刺激深度与旋转角度θ、半径的关系
图 5  聚焦面积与旋转角度θ、半径的关系
图 6  优化后的三层-8字形线圈在大脑皮质层表面的感应电场强度分布
线圈 Emax /(V·m?1 d1/2 /mm S1/2 /cm2
8字形线圈 167.741 18.380 14.822
三层-8字形线圈 172.980 14.123 9.925
优化后的Ⅱ类三层-8字形线圈
(Routi=17.5 mm,routi=25.5 mm,θ=3°)
224.643 15.004 11.052
表 3  8字形线圈与优化前后三层-8字形线圈的仿真计算结果
图 7  真实头部模型
图 8  基于真实头部模型,3类线圈的感应电场强度分布图
1 ZHANG Zhen, AI Wen-jie, DENG Bin, et al Improved figure-of-eight coil for transcranial magnetic stimulation using magnetic resonant coupling[J]. IEEE Transactions on Magnetics, 2017, 53 (11): 9100605
2 DENG Bin, LI Shuai, LI Bin Noninvasive brain stimulation using strong-coupling effect of resonant magnetics[J]. IEEE Transactions on Magnetics, 2017, 53 (11): 5800109
3 LI Yi-nan, COSOROABA E, MAHARJAN L, et al Comparative study of a new coil design with traditional shielded figure-of-eight coil for transcranial magnetic stimulation[J]. IEEE Transactions on Magnetics, 2017, 54 (3): 5100804
4 ISSERLES M, SHALEV A Y, ROTH Y, et al Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder: a pilot study[J]. Brain Stimulation, 2013, 6 (3): 377- 383
doi: 10.1016/j.brs.2012.07.008
5 LU M, UENO S. Deep transcranial magnetic stimulation using figure-of-eight and Halo coils [C]// IEEE International Magnetics Conference. [S. l.]: IEEE, 2015: 5101024.
6 FILIPCIC I, FILIPCIC I S, MILOVAC Z, et al Efficacy of repetitive transcranial magnetic stimulation using a figure-8-coil or an H1-Coil in treatment of major depressive disorder; a randomized clinical trial[J]. Journal of Psychiatric Research, 2019, 114: 113- 119
doi: 10.1016/j.jpsychires.2019.04.020
7 熊慧, 高毅娟, 刘近贞 基于经颅磁刺激的线圈阵列设计方法研究[J]. 航天医学与医学工程, 2018, 31 (5): 61- 66
XIONG Hui, GAO Yi-juan, LIU Jin-zhen Study on coil array design method based on transcranial magnetic stimulation[J]. Space Medicine and Medical Engineering, 2018, 31 (5): 61- 66
8 WEI X, LI Y, LU M, et al Comprehensive survey on improved focality and penetration depth of transcranial magnetic stimulation employing multi-coil arrays[J]. International Journal of Environmental Research and Public Health, 2017, 14 (11): 13881404
9 熊慧, 连璐, 刘近贞 基于人体头部模型的经颅磁刺激反向线圈研究[J]. 航天医学与医学工程, 2019, 32 (6): 517- 522
XIONG Hui, LIAN Lu, LIU Jin-zhen Study on reverse coil for transcranial magnetic stimulation based on human head model[J]. Space Medicine and Medical Engineering, 2019, 32 (6): 517- 522
10 DENG Z D, LISANBY S H, PETERCHEV A V Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs[J]. Brain Stimulation, 2012, 6 (1): 1- 13
11 WILLIAMS P I, MARKETOS P, CROWTHER L J, et al New designs for deep brain transcranial magnetic stimulation[J]. IEEE Transactions on Magnetics, 2012, 48 (3): 1171- 1178
doi: 10.1109/TMAG.2011.2170703
12 LUIS G, STEFAN G, PETERCHEV A V Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy[J]. Journal of Neural Engineering, 2018, 15 (4): 046033
doi: 10.1088/1741-2552/aac967
13 DENG Z D, LISANBY S H, PETERCHEV A V Coil design considerations for deep transcranial magnetic stimulation[J]. Clinical Neurophysiology, 2014, 125 (6): 1202- 1212
doi: 10.1016/j.clinph.2013.11.038
14 LEE W H, LISANBY S H, LAINE A F, et al Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model[J]. European Psychiatry the Journal of the Association of European Psychiatrists, 2016, 36: 55- 64
doi: 10.1016/j.eurpsy.2016.03.003
15 KRINGS T, BUCHBINDER B R, BUTLER W E, et al Stereotactic transcranial magnetic stimulation: correlation with direct electrical cortical stimulation[J]. Neurosurgery, 1997, 41 (6): 1319- 1325
doi: 10.1097/00006123-199712000-00016
16 JALINOUS R. Guide to magnetic stimulation [M]. Whitland, UK: The MagStim Company, 1998.
17 ZUCCA M, BOTTAUSCIO O, CHIAMPI M, et al Operator safety and field focality in aluminum shielded transcranial magnetic stimulation[J]. IEEE Transactions on Magnetics, 2017, 53 (11): 1- 4
18 GUADAGNIN V, PARAZZINI M, FIOCCHI S, et al Deep transcranial magnetic stimulation: modeling of different coil configurations[J]. IEEE Transactions BioMedical Engineering, 2016, 63 (7): 1543- 1550
doi: 10.1109/TBME.2015.2498646
19 熊慧, 王玉领, 付浩, 等 一种应用于经颅磁刺激脉冲宽度可调的节能型激励源[J]. 电工技术学报, 2020, 35 (4): 679- 686
XIONG Hui, WANG Yu-ling, FU Hao, et al An energy efficient excitation source for transcranial magnetic stimulation with controllable pulse width[J]. Transactions of China Electrotechnical Society, 2020, 35 (4): 679- 686
20 GOETZ S M, TRUONG C N, GERHOFER M G, et al Analysis and optimization of pulse dynamics for magnetic stimulation[J]. Plos One, 2013, 8 (3): e55771
doi: 10.1371/journal.pone.0055771
21 ROSSI S, HALLETT M, ROSSINI P M, et al Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research[J]. Clinical Neurophysiol, 2009, 120 (12): 2008- 2039
doi: 10.1016/j.clinph.2009.08.016
22 CHANG Si-yuan, WEI Xi-le, ZHANG Zhen, et al Twin coil design considerations for depth and focality in transcranial magnetic stimulation[J]. IEEE Transactions on Magnetics, 2018, 54 (11): 5001305
23 SAMOUDI A M, TANGHE E, MARTENS L, et al Deep transcranial magnetic stimulation: improved coil design and assessment of the induced fields using MIDA model[J]. Bio Med Research International, 2018, 2018: 7061420
24 GABRIEL C, GABRIEL S, CORTHOUT E The dielectric properties of biological tissues: literature survey[J]. Physics in Medicine and Biology, 1996, 41 (11): 2231- 2249
doi: 10.1088/0031-9155/41/11/001
[1] 黄毅鹏,胡冀苏,钱旭升,周志勇,赵文露,马麒,沈钧康,戴亚康. SE-Mask-RCNN:多参数MRI前列腺癌分割方法[J]. 浙江大学学报(工学版), 2021, 55(1): 203-212.
[2] 童基均,柏雁捷,潘剑威,杨佳锋,蒋路茸. 基于变分模态分解的心冲击信号和呼吸信号分离[J]. 浙江大学学报(工学版), 2020, 54(10): 2058-2066.
[3] 洪炎佳,孟铁豹,黎浩江,刘立志,李立,徐硕瑀,郭圣文. 多模态多维信息融合的鼻咽癌MR图像肿瘤深度分割方法[J]. 浙江大学学报(工学版), 2020, 54(3): 566-573.
[4] 杨熠,钱旭升,周志勇,朱建兵,沈钧康,戴亚康. 采用影像组学的肾肿瘤组织学亚型分类[J]. 浙江大学学报(工学版), 2019, 53(12): 2381-2388.
[5] 吴谦,王平. 肺癌呼吸标志物筛选及其生物信息学分析[J]. 浙江大学学报(工学版), 2019, 53(12): 2389-2395.
[6] 杨婧,耿辰,王海林,纪建松,戴亚康. 基于DenseNet的低分辨CT影像肺腺癌组织学亚型分类[J]. 浙江大学学报(工学版), 2019, 53(6): 1164-1170.
[7] 贺永,高庆,刘安,孙苗,傅建中. 生物3D打印——从形似到神似[J]. 浙江大学学报(工学版), 2019, 53(3): 407-419.
[8] 王琴, 方佳如, 曹端喜, 周洁, 苏凯麒, 黎洪波, 王平. 心肌细胞传感器优化设计及其药物分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1214-1220.
[9] 王琴, 方佳如, 曹端喜, 周洁, 苏凯麒, 黎洪波, 王平. 心肌细胞传感器优化设计及其药物分析[J]. 浙江大学学报(工学版), 2015, 49(12): 2432-2438.
[10] 陈婧, 许敏芬, 王立强, 袁波, 段会龙, 唐佳. 用于FICE图像增强效果的客观评价方法[J]. 浙江大学学报(工学版), 2015, 49(10): 2013-2017.
[11] 郑翔,张寅升,黄震震,贾峥,段会龙,赵饮虹,李昊旻. 可扩展的临床决策支持应用集成架构[J]. 浙江大学学报(工学版), 2015, 49(9): 1658-1664.
[12] 何为, 夏灵. 基于掩码的区域增长相位解缠方法[J]. 浙江大学学报(工学版), 2015, 49(4): 792-797.
[13] 周聪聪, 涂春龙, 高云, 王飞翔, 何成, 龚红伟,连平, 叶学松. 腕戴式低功耗无线心率监测装置的研制[J]. 浙江大学学报(工学版), 2015, 49(4): 798-806.
[14] 李江,赵雅琼,包晔华. 基于混沌和替代数据法的中风病人声音分析[J]. 浙江大学学报(工学版), 2015, 49(1): 36-41.
[15] 何为, 夏灵. 基于掩码的区域增长相位解缠方法[J]. 浙江大学学报(工学版), 2014, 48(11): 1-2.