Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2381-2388    DOI: 10.3785/j.issn.1008-973X.2019.12.016
计算机科学与人工智能     
采用影像组学的肾肿瘤组织学亚型分类
杨熠1,2(),钱旭升2,周志勇2,朱建兵3,4,沈钧康5,戴亚康2,*()
1. 中国科学技术大学,安徽 合肥 230000
2. 中国科学院苏州生物医学工程技术研究所,江苏 苏州 215163
3. 苏州科技城医院,江苏 苏州 215163
4. 南京医科大学附属苏州科技城医院,江苏 苏州 215163
5. 苏州大学附属第二医院,江苏 苏州 215163
Classification of renal tumor histology subtypes using radiomics
Yi YANG1,2(),Xu-sheng QIAN2,Zhi-yong ZHOU2,Jian-bing ZHU3,4,Jun-kang SHEN5,Ya-kang DAI2,*()
1. University of Science and Technology of China, Hefei 230000, China
2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
3. Suzhou Science and Technology Town Hospital, Suzhou 215163, China
4. Suzhou Science and Technology Hospital Affiliated to Nanjing Medical University, Suzhou 215163, China
5. Second Affiliated Hospital of Suzhou University, Suzhou 215163, China
 全文: PDF(1356 KB)   HTML
摘要:

为了在术前更准确、非侵入地鉴别乏脂肪血管平滑肌脂肪瘤(fp-AML)和肾透明细胞癌(ccRCC),提出一种基于CT图像的影像组学模型. 从CT图像中提取774个三维的影像组学特征;分三步进行特征选择:计算皮尔森相关矩阵剔除冗余特征,使用Welch’s t检验确定具有显著差异的特征,利用序列浮动前向选择算法选择具有鉴别能力的特征;使用基于稀疏学习的径向基函数神经网络进行分类. 结果表明:该模型获得的正确率、敏感度、特异性和受试者工作特征曲线下面积分别为90.00%、66.67%、100.0%和0.9173. 利用分类器的输出概率进行模型的可靠性评估,当概率阈值为0.95时,该模型获得的自信正确率、未定率和错分率分别为71.67%、25.00%和3.33%,结果表明所提出的影像组学模型能可靠地对fp-AML和ccRCC进行分类.

关键词: 计算机辅助诊断乏脂肪血管平滑肌脂肪瘤肾透明细胞癌影像组学径向基函数神经网络    
Abstract:

A CT-based radiomics model was proposed to increase the accuracy of preoperative noninvasive differentiation of fp-AML from ccRCC. There were 774 three-dimensional radiomics features extracted from CT images. The feature selection was carried by three steps: Pearson’s correlation matrices were calculated to remove redundant features; Welch’s t-test was used to determine the statistically significant features; and sequential forward floating selection method was utilized to select the discriminative features. The sparse radial basis function neural network was employed for classification. Results show that the radiomics model yields accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curves of 90.00%, 66.67%, 100.0%, and 0.9173, respectively. The reliability of model was assessed by probabilistic outputs of classifiers. When the probability threshold is 0.95, the model obtains confident classification accuracy, undecided rate, and misclassification rate of 71.67%, 25.00%, and 3.33%, respectively. Results demonstrate that the proposed radiomics model can achieve reliable discrimination of fp-AML from ccRCC.

Key words: computer-aided diagnosis    fat-poor angiomyolipoma    clear cell renal cell carcinoma    radiomics    radial basis function neural network
收稿日期: 2019-02-22 出版日期: 2019-12-17
CLC:  R 318.13  
基金资助: 国家重点研发计划资助项目(2017YFB1103602,2017YFC0114304,2018YFC0116904);中国科学院科研仪器设备研制项目(YJKYYQ20170050);苏州市民生科技项目(SYS2018010);苏州高新区卫生和计划生育局(2017Z005);江苏省重点研发计划(BE2017675,BE2018610);江苏省自然科学基金(BE2017664,BK20180221);苏州市科技计划项目(SZ201609,SZS201818);浙江省重点研发计划(2018C03024);浙江公益研究计划社会发展项目(LGH18H160035)
通讯作者: 戴亚康     E-mail: yangyi129@icloud.com;daiyk@sibet.ac.cn
作者简介: 杨熠(1994—),女,硕士生,从事医学影像分析研究. orcid.org/0000-0002-3655-2056. E-mail: yangyi129@icloud.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨熠
钱旭升
周志勇
朱建兵
沈钧康
戴亚康

引用本文:

杨熠,钱旭升,周志勇,朱建兵,沈钧康,戴亚康. 采用影像组学的肾肿瘤组织学亚型分类[J]. 浙江大学学报(工学版), 2019, 53(12): 2381-2388.

Yi YANG,Xu-sheng QIAN,Zhi-yong ZHOU,Jian-bing ZHU,Jun-kang SHEN,Ya-kang DAI. Classification of renal tumor histology subtypes using radiomics. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2381-2388.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.016        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2381

图 1  影像组学模型的算法流程图
图 2  fp-AML和ccRCC的感兴趣区域(ROI)示例
图 3  2D和3D特征的计算角度对比
图 4  基于稀疏学习的径向基函数神经网络(sRBFNN)结构图
图 5  基于不同数量3D特征的4种分类器的正确率比较
分类器 a/% e/% s/% AUC
RF 86.67 55.56 100.0 0.748 0
kNN 86.67 61.11 97.62 0.789 7
SVM 86.67 61.11 97.62 0.672 0
sRBFNN 90.00 66.67 100.0 0.917 3
表 1  4种分类器的最优性能比较
图 6  4种分类器的可靠性评估
图 7  基于不同数量2D特征的分类器正确率
评价指标 a/% e/% s/% AUC
2D特征 83.33 66.67 90.48 0.862 4
3D特征 90.00 66.67 100.0 0.917 3
表 2  基于2D和3D特征的分类结果对比
图 8  基于2D和3D特征的模型分类的可靠性对比
本文模型 分类方法 放射科医生
λp = 0.50 λp = 0.75 λp = 0.85 λp = 0.95
Nc 48 54 51 45 43
Nu 4 0 3 10 15
Nm 8 6 6 5 2
表 3  本文模型和放射科医生的分类结果对比
图 9  本文模型和放射科医生误诊的2例fp-AML
1 HSIEH J J, PURDUE P M, SIGNORETTI S, et al Renal cell carcinoma[J]. Nature Reviews Disease Primers, 2017, 3: 17009
doi: 10.1038/nrdp.2017.9
2 WORLD Cancer Research Fund International. Kidney cancer statistics [J/OL]. Available at https://www.wcrf.org/dietandcancer/cancer-trends/kidney-cancer-statistics, January 2018.
3 WEI J, ZHAO J, ZHANG X, et al Analysis of dual energy spectral CT and pathological grading of clear cell renal cell carcinoma (ccRCC)[J]. PLOS ONE, 2018, 13 (5): e0195699
doi: 10.1371/journal.pone.0195699
4 JINZAKI M, SIVERMAN S G, and TANIMOTO A Angiomyolipoma that do not contain fat attenuation at unenhanced CT[J]. Radiology, 2005, 234 (1): 311
doi: 10.1148/radiol.2341041128
5 PRASAD S R, SURABHI V R, MENIAS C O, et al Benign renal neoplasms in adults: cross-sectional imaging findings[J]. American Journal of Roentgenology, 2008, 190 (1): 158- 164
doi: 10.2214/AJR.07.2724
6 HALPENNY D, SNOW A, MCNEILL G, et al The radiological diagnosis and treatment of renal angiomyolipoma-current status[J]. Clinical Radiology, 2010, 65 (2): 99- 108
doi: 10.1016/j.crad.2009.09.014
7 LANE B R, AYDIN H, DANFORTH T L, et al Clinical correlates of renal angiomyolipoma subtypes in 209 patients: classic, fat poor, tuberous sclerosis associated and epithelioid[J]. The Journal of Urology, 2008, 180 (3): 836- 843
doi: 10.1016/j.juro.2008.05.041
8 FENG Z, RONG P, CAO P, et al Machine learning-based quantitative texture analysis of CT images of small renal masses: differentiation of angiomyolipoma without visible fat from renal cell carcinoma[J]. European Radiology, 2018, 28 (4): 1625- 1633
doi: 10.1007/s00330-017-5118-z
9 LEE H S, HONG H, JUNG D C, et al Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification[J]. Medical Physics, 2017, 44 (7): 3604- 3614
doi: 10.1002/mp.2017.44.issue-7
10 MOLINA D, JULIáN P, BELéN L, et al Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival[J]. The British Journal of Radiology, 2016, 89 (1064): 20160242
doi: 10.1259/bjr.20160242
11 LAMBIN P, LEIJENAAR R T H, DEIST T M, et al Radiomics: the bridge between medical imaging and personalized medicine[J]. Nature Reviews Clinical Oncology, 2017, 14: 749
doi: 10.1038/nrclinonc.2017.141
12 ELISABETTA D B, BUDA A, GUERRA L, et al Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer[J]. EJNMMI Research, 2018, 8 (1): 86
doi: 10.1186/s13550-018-0441-1
13 FERREIRA JUNIOR J R, KOENIGKAM-SANTOS M, CIPRIANO F E G, et al Radiomics-based features for pattern recognition of lung cancer histopathology and metastases[J]. Computer Methods and Programs in Biomedicine, 2018, 159: 23- 30
doi: 10.1016/j.cmpb.2018.02.015
14 SAPATE S G, MAHAJAN A, TALBAR S N, et al Radiomics based detection and characterization of suspicious lesions on full field digital mammograms[J]. Computer Methods and Programs in Biomedicine, 2018, 163: 1- 20
doi: 10.1016/j.cmpb.2018.05.017
15 MENG X, XIA W, XIE P, et al Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer[J]. European Radiology, 2018, 1- 10
16 QIAN X, HUANG H, CHEN X, et al Efficient construction of sparse radial basis function neural networks using L1-regularization[J]. Neural Networks, 2017, 94: 239- 254
doi: 10.1016/j.neunet.2017.07.004
17 LUBNER M G, SMITH A D, SANDRASEGARAN K, et al CT texture analysis: definitions, applications, biologic correlates, and challenges[J]. RadioGraphics, 2017, 37 (5): 1483- 1503
doi: 10.1148/rg.2017170056
18 ZWANENBURG A, LEGER S, VALLIèRES M, et al. Image biomarker standardisation initiative-feature definitions [J/OL]. arXiv eprints, 2016. https://ui.adsabs.harvard.edu/abs/2016arXiv161207003Z
19 AERTS H J, VELAZQUEZ E R, LEIJENAAR R T, et al Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nature Communications, 2014, 5: 4006
doi: 10.1038/ncomms5006
20 HARIKUMAR R and VINOTH KUMAR B Performance analysis of neural networks for classification of medical images with wavelets as a feature extractor[J]. International Journal of Imaging Systems and Technology, 2015, 25 (1): 33- 40
doi: 10.1002/ima.v25.1
21 PEARSON K Note on regression and inheritance in the case of two parents[J]. Proceedings of the Royal Society of London, 1895, 58: 240- 242
doi: 10.1098/rspl.1895.0041
22 DERRICK B and WHITE P Why Welch’s test is type I error robust[J]. The Quantitative Methods in Psychology, 2016, 12 (1): 30- 38
doi: 10.20982/tqmp.12.1.p030
23 AHA D W, BANKERT R L. A Comparative Evaluation of Sequential Feature Selection Algorithms [M]. New York: Springer, 1996: 199-206.
24 FALLAHPOUR S, LAKVAN E N, and ZADEH M H Using an ensemble classifier based on sequential floating forward selection for financial distress prediction problem[J]. Journal of Retailing and Consumer Services, 2017, 34: 159- 167
doi: 10.1016/j.jretconser.2016.10.002
25 BUGDOL M D, BUGDOL M N, LIPOWICZ A M, et al Prediction of menarcheal status of girls using voice features[J]. Computers in Biology and Medicine, 2018, 100: 296- 304
doi: 10.1016/j.compbiomed.2017.11.005
26 PARMAR C, GROSSMANN P, BUSSINK J, et al Machine learning methods for quantitative radiomic biomarkers[J]. Scientific Reports, 2015, 5: 13087
doi: 10.1038/srep13087
27 JOSHI A, METHA A Analysis of K-nearest neighbor technique for breast cancer disease classification[J]. International Journal of Recent Scientific Research, 2018, 9 (4): 26126- 26130
28 JOSé LUIS R, MANEL M, JORDI M, et al. Support vector machine and kernel classification algorithms [C] // Digital Signal Processing with Kernel Methods. New Jersey: Wiley-IEEE Press, 2018: 672.
29 CHENG J Z, NI D, CHOU Y H, et al Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans[J]. Scientific Reports, 2016, 6: 24454
doi: 10.1038/srep24454
30 LEE H, HONG H, KIM J, et al Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation[J]. Medical Physics, 2018, 45 (4): 1550
doi: 10.1002/mp.2018.45.issue-4
31 CHAPELLE O, VAPNIK V, BOUSQUET O, et al Choosing multiple parameters for support vector machines[J]. Machine Learning, 2002, 46 (1): 131- 159
32 LUKAS L, DEVOS A, SUYKENS J A K, et al Brain tumor classification based on long echo proton MRS signals[J]. Artificial Intelligence in Medicine, 2004, 31 (1): 73- 89
doi: 10.1016/j.artmed.2004.01.001
[1] 陶正瑞,党嘉强,徐锦泱,安庆龙,陈明,王力,任斐. 曲面基体绝缘涂镀层涡流测厚高精度标定方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1218-1227.
[2] 邵光成,章坤,王志宇,王小军,卢佳. 基于IABC-RBF神经网络的地下水埋深预测模型[J]. 浙江大学学报(工学版), 2019, 53(7): 1323-1330.
[3] 王洪凯, 陈中华, 周纵苇, 李迎辞, 陆佩欧, 王文志, 刘宛予, 于丽娟. 机器学习算法诊断PET/CT纵膈淋巴结性能评估[J]. 浙江大学学报(工学版), 2018, 52(4): 788-797.
[4] 尤海辉, 马增益, 唐义军, 王月兰, 郑林, 俞钟, 吉澄军. 循环流化床入炉垃圾热值软测量[J]. 浙江大学学报(工学版), 2017, 51(6): 1163-1172.
[5] 李敏丹,沈晔,章东平,殷海兵. 基于混合类别标记新技术的小样本学习算法[J]. 浙江大学学报(工学版), 2016, 50(1): 137-143.
[6] 沈晔 ,李敏丹,夏顺仁. 计算机辅助乳腺癌诊断中的非平衡学习技术[J]. J4, 2013, 47(1): 1-7.
[7] 沈晔, 李敏丹, 夏顺仁. 计算机辅助乳腺癌诊断中的非平衡学习技术[J]. J4, 2013, 47(1): 1-7.
[8] 曹颖, 郝欣, 朱晓恩, 夏顺仁. 基于自动随机游走的乳腺肿块分割算法[J]. J4, 2011, 45(10): 1753-1760.
[9] 闫丹丹 张孝通 朱善安 贺斌. 头部异物两步核磁共振电阻抗成像仿真研究[J]. J4, 2008, 42(4): 661-666.