Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (3): 407-419    DOI: 10.3785/j.issn.1008-973X.2019.03.001
机械工程     
生物3D打印——从形似到神似
贺永(),高庆,刘安,孙苗,傅建中
浙江大学 流体动力与机电系统国家重点实验室 机械工程学院,浙江 杭州 310027
3D bioprinting: from structure to function
Yong HE(),Qing GAO,An LIU,Miao SUN,Jian-zhong FU
State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1365 KB)   HTML HTML
摘要:

系统回顾生物3D打印的提出背景,给出生物3D打印的研究范围,梳理生物3D打印的发展历程. 重点聚焦于回顾操纵细胞的生物3D打印研究,并结合课题组近年来的研究及思考,对生物3D打印的发展进行展望. 更好地结合临床需求,实现从组织结构的仿生制造过渡到功能化的再造是生物3D打印未来取得突破的关键.

关键词: 生物3D打印细胞打印生物墨水生物打印机组织工程仿生制造    
Abstract:

Review the background of 3D bioprinting systematically, provide the research scope of 3D bioprinting, and summarize the development of 3D bioprinting. This review focuses on the 3D bioprinting of manipulating cells, and the development of 3D bioprinting was prospected combined with the research and thought of our research group in recent years. To better integrate clinical needs to realize transition from bionic manufacturing of organizational structure to functional reconstruction is the key to the breakthrough of 3D bioprinting in the future.

Key words: 3D bioprinting    cell printing    bioink    bioprinter    tissue engineering    bionic manufacturing
收稿日期: 2018-06-19 出版日期: 2019-03-04
CLC:  R 318.08  
作者简介: 贺永(1979—),男,教授,从事生物制造研究. orcid.org/0000-0002-9099-0831. E-mail: yongqin@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
贺永
高庆
刘安
孙苗
傅建中

引用本文:

贺永,高庆,刘安,孙苗,傅建中. 生物3D打印——从形似到神似[J]. 浙江大学学报(工学版), 2019, 53(3): 407-419.

Yong HE,Qing GAO,An LIU,Miao SUN,Jian-zhong FU. 3D bioprinting: from structure to function. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 407-419.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.03.001        http://www.zjujournals.com/eng/CN/Y2019/V53/I3/407

图 1  生物3D打印原理
图 2  喷墨式生物3D打印原理
图 3  激光直写式生物3D打印原理
图 4  挤出式生物3D打印原理
图 5  基于数字微镜(DMD)的光固化式生物3D打印原理
图 6  典型的基于挤出方式的生物3D打印机组成
图 7  商业化的生物3D打印机
图 8  课题组研发的EFL-BP系列生物3D打印机
图 9  课题组设计的原创打印工艺
图 10  软骨组织的生物3D打印
图 11  皮肤的生物打印
图 12  血管的生物3D打印
图 13  肿瘤模型的生物3D打印
图 14  复杂组织器官的3D打印
1 BASSOLI E, GATTO A, IULIANO L, et al 3D printing technique applied to rapid casting[J]. Rapid Prototyping Journal, 2007, 13 (3): 148- 155
doi: 10.1108/13552540710750898
2 VENTOLA CL Medical applications for 3D printing: current and projected uses[J]. Pharmacy and Therapeutics, 2014, 39 (10): 704
3 LIU Y, GAO Q, DU S, et al Fabrication of cerebral aneurysm simulator with a desktop 3D printer[J]. Scientific Reports, 2017, 7: 44301
doi: 10.1038/srep44301
4 HE Y, XUE G, FU J Fabrication of low cost soft tissue prostheses with the desktop 3D printer[J]. Scientific Reports, 2014, 4: 6973
5 邵惠锋, 贺永, 傅建中 增材制造可降解人工骨的研究进展: 从外形定制到性能定制[J]. 浙江大学学报: 工学版, 2018, 52 (6): 1035- 1057
SHAO Hui-feng, HE Yong, FU Jian-zhong Research advance of degradable artificial bone with additive manufacturing: customization from geometric shape to property[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (6): 1035- 1057
6 SHAO H, YANG X, HE Y, et al Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior[J]. Biofabrication, 2015, 7 (3): 035010
doi: 10.1088/1758-5090/7/3/035010
7 SHAO H, HE Y, FU J, et al 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation[J]. Journal of the European Ceramic Society, 2016, 36 (6): 1495- 1503
doi: 10.1016/j.jeurceramsoc.2016.01.010
8 SHAO H, KE X, LIU A, et al Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect[J]. Biofabrication, 2017, 9 (2): 025003
doi: 10.1088/1758-5090/aa663c
9 董鹤, 方玉婷, 王丹, 等 国内外器官捐献现状与思考[J]. 护理学报, 2017, 24 (11): 23- 26
DONG He, FANG Yu-ting, WANG Dan, et al Current situation and thinking of organ donation at home and abroad[J]. Journal of Nursing (China), 2017, 24 (11): 23- 26
10 杨颖, 黄海, 邱鸿钟 我国公民逝世后器官捐献意愿调查及影响因素研究[J]. 中国医院, 2014, 18 (3): 18- 19
YANG Ying, HUANG Hai, QIU Hong-zhong Study on the willingness and influence factors of organ donation after death of citizens in China[J]. Chinese Hospitals, 2014, 18 (3): 18- 19
doi: 10.3969/j.issn.1671-0592.2014.03.009
11 OZBOLAT I T, YU Y Bioprinting toward organ fabrication: challenges and future trends[J]. IEEE Transactions on Biomedical Engineering, 2013, 60 (3): 691- 699
doi: 10.1109/TBME.2013.2243912
12 MANDRYCKY C, WANG Z, KIM K, et al 3D bioprinting for engineering complex tissues[J]. Biotechnology Advances, 2016, 34 (4): 422- 434
doi: 10.1016/j.biotechadv.2015.12.011
13 HE Y, YANG F F, ZHAO H M, et al Research on the printability of hydrogels in 3D bioprinting[J]. Scientific Reports, 2016, 6: 29977
doi: 10.1038/srep29977
14 甲基丙烯酸酐化水凝胶(GelMA, EFL-GM系列)[R/OL].[2018-08-08]. http://www.imrsz.com/page-31-11.html.
15 TUAN R Adult mesenchymal stem cells and cell-based tissue engineering[J]. Arthritis Research and Therapy, 2003, 5 (1): 32- 45
doi: 10.1186/ar614
16 XU T, GREGORY C Viability and electrophysiology of neural cell structures generated by the inkjet printing method[J]. Biomaterials, 2006, 27 (19): 3580- 8
17 XU C, ZHANG M, HUANG Y, et al Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink[J]. Langmuir, 2014, 30 (30): 9130- 9138
doi: 10.1021/la501430x
18 XU C, CHAI W, HUANG Y, et al Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes[J]. Biotechnology and Bioengineering, 2012, 109 (12): 3152- 3160
19 CUI X, BOLAND T Human microvasculature fabrication using thermal inkjet printing technology[J]. Biomaterials, 2009, 30 (31): 6221- 6227
doi: 10.1016/j.biomaterials.2009.07.056
20 KIM J D, CHOI J S, KIM B S, et al Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates[J]. Polymer, 2010, 51 (10): 2147- 2154
doi: 10.1016/j.polymer.2010.03.038
21 CUI X, DEAN D, RUGGERI Z Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells[J]. Biotechnology and Bioengineering, 2010, 106 (6): 963- 969
doi: 10.1002/bit.22762
22 PIQUE A, CHRISEY D B, AUYEUNG R C Y, et al A novel laser transfer process for direct writing of electronic and sensor materials[J]. Applied Physics A, 1999, 69 (1): S279- S284
23 ODDE D J, RENN M J Laser‐guided direct writing of living cells[J]. Biotechnology and Bioengineering, 2000, 67 (3): 312- 318
doi: 10.1002/(ISSN)1097-0290
24 RINGEISEN B R, KIM H, BARRON J A, et al Laser printing of pluripotent embryonal carcinoma cells[J]. Tissue Engineering, 2004, 10 (3/4): 483- 491
doi: 10.1089/107632704323061843
25 SCHIELE N R, CORR D T, HUANG Y, et al Laser-based direct-write techniques for cell printing[J]. Biofabrication, 2010, 2 (3): 032001
doi: 10.1088/1758-5082/2/3/032001
26 BARRON J A, WU P, LADOUCEUR H D, et al Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns[J]. Biomedical Microdevices, 2004, 6 (2): 139- 147
doi: 10.1023/B:BMMD.0000031751.67267.9f
27 KOCH L, DEIWICK A, SCHLIE S, et al Skin tissue generation by laser cell printing[J]. Biotechnology and bioengineering, 2012, 109 (7): 1855- 1863
doi: 10.1002/bit.v109.7
28 BARRON J A, KRIZMAN D B, RINGEISEN B R Laser printing of single cells: statistical analysis, cell viability, and stress[J]. Annals of biomedical engineering, 2005, 33 (2): 121- 130
doi: 10.1007/s10439-005-8971-x
29 GRUENE M, PFLAUM M, HESS C, et al Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions[J]. Tissue Engineering Part C: Methods, 2011, 17 (10): 973- 982
doi: 10.1089/ten.tec.2011.0185
30 GUILLEMOT F, SOUQUET A, CATROS S, et al High-throughput laser printing of cells and biomaterials for tissue engineering[J]. Acta Biomaterialia, 2010, 6 (7): 2494- 2500
doi: 10.1016/j.actbio.2009.09.029
31 LANDERS R, HUBNER U, SCHMELZEISEN R, et al Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering[J]. Biomaterials, 2002, 23 (23): 4437- 4447
doi: 10.1016/S0142-9612(02)00139-4
32 OZBOLAT I T, HOSPODIUK M Current advances and future perspectives in extrusion-based bioprinting[J]. Biomaterials, 2016, 76: 321- 343
doi: 10.1016/j.biomaterials.2015.10.076
33 COLOSI C, SHIN S R, MANOHARAN V, et al Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink[J]. Advanced Materials, 2016, 28 (4): 677- 684
doi: 10.1002/adma.201503310
34 TRACHTENBERG J E, PLACONE J K, SMITH B T, et al Extrusion-based 3D printing of poly (propylene fumarate) in a full-factorial design[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1771- 1780
doi: 10.1021/acsbiomaterials.6b00026
35 FAULKNER-JONES A, FYFE C, CORNELISSEN D J, et al Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D[J]. Biofabrication, 2015, 7 (4): 044102
doi: 10.1088/1758-5090/7/4/044102
36 HO C T, LIN R Z, CHEN R J, et al Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue[J]. Lab on a Chip, 2013, 13 (18): 3578- 3587
doi: 10.1039/c3lc50402f
37 GAUVIN R, CHEN Y C, LEE J W, et al Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography[J]. Biomaterials, 2012, 33 (15): 3824- 3834
doi: 10.1016/j.biomaterials.2012.01.048
38 WANG Z, ABDULLA R, PARKER B, et al A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks[J]. Biofabrication, 2015, 7 (4): 045009
doi: 10.1088/1758-5090/7/4/045009
39 ZHANG A P, QU X, SOMAN P, et al Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography[J]. Advanced Materials, 2012, 24 (31): 4266- 4270
doi: 10.1002/adma.v24.31
40 LIN H, ZHANG D, ALEXANDER P G, et al Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture[J]. Biomaterials, 2013, 34 (2): 331- 339
doi: 10.1016/j.biomaterials.2012.09.048
41 HRIBAR K C, SOMAN P, WARNER J, et al Light-assisted direct-write of 3D functional biomaterials[J]. Lab on a Chip, 2014, 14 (2): 268- 275
doi: 10.1039/C3LC50634G
42 THOMAS D J, JESSOP Z M, WHITAKER L S. 3D bioprinting for reconstructive surgery: techniques and applications [M]. Combridge: Woodhead Publishing, 2017.
43 生物3D打印机(EFL-BP系列)[R].[2018-08-08]. http://www.imrsz.com/page-31-13.html.
44 ZHAO H, CHEN Y, SHAO L, et al Airflow-assisted 3D bioprinting of human heterogeneous microspheroidal organoids with microfluidic nozzle[J]. Small, 2018, 14 (39): 1802630
doi: 10.1002/smll.v14.39
45 SHAO L, GAO Q, ZHAO H, et al Fiber-based mini tissue with morphology-controllable GelMA microfibers[J]. Small, 2018, 1802187
doi: 10.1002/smll.201802187
46 TATMAN P D, GERULL W, SWEENEY-EASTER S, et al Multiscale biofabrication of articular cartilage: bioinspired and biomimetic approaches[J]. Tissue Engineering Part B: Reviews, 2015, 21 (6): 543- 559
doi: 10.1089/ten.teb.2015.0142
47 KUNDU J, ShiM J H, JANG J, et al An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering[J]. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9 (11): 1286- 1297
doi: 10.1002/term.v9.11
48 YOU F, WU X, ZHU N, et al 3D printing of porous cell-laden hydrogel constructs for potential applications in cartilage tissue engineering[J]. ACS Biomaterials Science and Engineering, 2016, 2 (7): 1200- 1210
doi: 10.1021/acsbiomaterials.6b00258
49 CUI X, BREITENKAMP K, FINN M G, et al Direct human cartilage repair using three-dimensional bioprinting technology[J]. Tissue Engineering Part A, 2012, 18 (11/12): 1304- 1312
doi: 10.1089/ten.tea.2011.0543
50 NARAYANAN L K, HUEBNER P, FISHER M B, et al 3D-bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1732- 1742
doi: 10.1021/acsbiomaterials.6b00196
51 RHEE S, PUETZER J L, MASON B N, et al 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1800- 1805
doi: 10.1021/acsbiomaterials.6b00288
52 ARMSTRONG J P K, BURKE M, CARTER B M, et al 3D bioprinting using a templated porous bioink[J]. Advanced Healthcare Materials, 2016, 5 (14): 1724- 1730
doi: 10.1002/adhm.201600022
53 KANG H W, LEE S J, KO I K, et al A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J]. Nature Biotechnology, 2016, 34 (3): 312
doi: 10.1038/nbt.3413
54 MARKSTEDT K, MANTAS A, TOURNIER I, et al 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications[J]. Biomacromolecules, 2015, 16 (5): 1489- 1496
doi: 10.1021/acs.biomac.5b00188
55 LEE J S, HONG J M, JUNG J W, et al. 3D printing of composite tissue with complex shape applied to ear regeneration[J]. Biofabrication, 2014, 6(2): 024103.
56 MANNOOR M S, JIANG Z, JAMES T, et al 3D printed bionic ears[J]. Nano Letters, 2013, 13 (6): 2634- 2639
doi: 10.1021/nl4007744
57 LEE V, SINGH G, TRASATTI J P, et al Design and fabrication of human skin by three-dimensional bioprinting[J]. Tissue Engineering Part C: Methods, 2013, 20 (6): 473- 484
58 POURCHET L J, THEPOT A, ALBOUY M, et al Human skin 3D bioprinting using scaffold-free approach[J]. Advanced healthcare materials, 2017, 6 (4): 1601101
doi: 10.1002/adhm.201601101
59 SKARDAL A, MACK D, KAPETANOVIC E, et al Bioprinted amniotic fluid‐derived stem cells accelerate healing of large skin wounds[J]. Stem Cells Translational Medicine, 2012, 1 (11): 792- 802
doi: 10.5966/sctm.2012-0088
60 MICHAEL S, SORG H, PECK C T, et al Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice[J]. PLOS ONE, 2013, 8 (3): e57741
doi: 10.1371/journal.pone.0057741
61 VELASQUILLO C, GALUE E A, RODRIQUEZ L, et al Skin 3D bioprinting. Applications in cosmetology[J]. Journal of Cosmetics, Dermatological Sciences and Applications, 2013, 3 (1): 85
doi: 10.4236/jcdsa.2013.31A012
62 LEE W, DEBASITIS J C, LEE V K, et al Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication[J]. Biomaterials, 2009, 30 (8): 1587- 1595
doi: 10.1016/j.biomaterials.2008.12.009
63 CHRISTENSEN K, XU C, CHAI W, et al. Freeform inkjet printing of cellular structures with bifurcations[J]. Biotechnology and Bioengineering, 2015, 112(5): 1047-1055.
64 XIONG R, ZHANG Z, CHAI W, et al Freeform drop-on-demand laser printing of 3D alginate and cellular constructs[J]. Biofabrication, 2015, 7 (4): 045011
doi: 10.1088/1758-5090/7/4/045011
65 TABRIZ A G, HERMIDA M A, LESLIE N R, et al Three-dimensional bioprinting of complex cell laden alginate hydrogel structures[J]. Biofabrication, 2015, 7 (4): 045012
doi: 10.1088/1758-5090/7/4/045012
66 ZHU W, QU X, ZHU J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture[J]. Biomaterials, 2017, 124: 106-115.
67 MILLER J S, STEVENS K R, YANG M T, et al Rapid casting of patterned vascular networks for perfusable engineered 3D tissues[J]. Nature Materials, 2012, 11 (9): 768
doi: 10.1038/nmat3357
68 LEE V K, KIM D Y, NGO H, et al. Creating perfused functional vascular channels using 3D bio-printing technology[J]. Biomaterials, 2014, 35(28): 8092-8102.
69 BERTASSONI L E, CARDOSO J C, MANOHARAN V, et al Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels[J]. Biofabrication, 2014, 6 (2): 024105
doi: 10.1088/1758-5082/6/2/024105
70 KOLESKY D B, HOMAN K A, SKYLAR-SCOTT M A, et al Three-dimensional bioprinting of thick vascularized tissues[J]. Proceedings of the National Academy of Sciences, 2016, 113 (12): 3179- 3184
doi: 10.1073/pnas.1521342113
71 GAO Q, HE Y, FU J, et al Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery[J]. Biomaterials, 2015, 61: 203- 215
doi: 10.1016/j.biomaterials.2015.05.031
72 GAO Q, LIU Z, LIN Z, et al 3D bioprinting of vessel-like structures with multilevel fluidic channels[J]. ACS biomaterials science and engineering, 2017, 3 (3): 399- 408
doi: 10.1021/acsbiomaterials.6b00643
73 GROLMAN J M, ZHANG D, SMITH A M, et al Rapid 3D extrusion of synthetic tumor microenvironments[J]. Advanced Materials, 2015, 27 (37): 5512- 5517
doi: 10.1002/adma.201501729
74 ZHANG Y S, DUCHAMP M, OKLU R, et al Bioprinting the cancer microenvironment[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1710- 1721
doi: 10.1021/acsbiomaterials.6b00246
75 DAI X, MA C, LAN Q, et al 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility[J]. Biofabrication, 2016, 8 (4): 045005
doi: 10.1088/1758-5090/8/4/045005
76 LEE V K, DAI G, ZOU H, et al. Generation of 3-D glioblastoma-vascular niche using 3-D bioprinting [C] // 201541st Annual Northeast Biomedical Engineering Conference (NEBEC). Troy: IEEE, 2015: 1-2.
77 XU F, CELLI J, RIZVI I, et al A three‐dimensional in vitro ovarian cancer coculture model using a high‐throughput cell patterning platform[J]. Biotechnology journal, 2011, 6 (2): 204- 212
doi: 10.1002/biot.v6.2
78 ZHAO Y, YAO R, OUYANG L, et al Three-dimensional printing of Hela cells for cervical tumor model in vitro[J]. Biofabrication, 2014, 6 (3): 035001
doi: 10.1088/1758-5082/6/3/035001
79 HOCKADAY L A, KANG K H, COLANGELO N W, et al Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds[J]. Biofabrication, 2012, 4 (3): 035005
doi: 10.1088/1758-5082/4/3/035005
80 GOU M, QU X, ZHU W, et al Bio-inspired detoxification using 3D-printed hydrogel nanocomposites[J]. Nature communications, 2014, 5: 3774
doi: 10.1038/ncomms4774
81 OUYANG L, YAO R, MAO S, et al Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation[J]. Biofabrication, 2015, 7 (4): 044101
doi: 10.1088/1758-5090/7/4/044101
82 TSANG V L, CHEN A A, CHO L M, et al Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels[J]. The FASEB Journal, 2007, 21 (3): 790- 801
doi: 10.1096/fj.06-7117com
83 LEWIS P L, SHAH R N 3D printing for liver tissue engineering: current approaches and future challenges[J]. Current Transplantation Reports, 2016, 3 (1): 100- 108
doi: 10.1007/s40472-016-0084-y
84 DUAN B, HOCKADAY L A, KANG K H, et al 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels[J]. Journal of biomedical materials research Part A, 2013, 101 (5): 1255- 1264
85 HINTON T J, JALLERAT Q, PALCHESKO R N, et al Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels[J]. Science advances, 2015, 1 (9): e1500758
doi: 10.1126/sciadv.1500758
86 MA X, QU X, ZHU W, et al Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting[J]. Proceedings of the National Academy of Sciences, 2016, 113 (8): 2206- 2211
doi: 10.1073/pnas.1524510113
87 LOZANO R, STEVENS L, THOMPSON B C, et al 3D printing of layered brain-like structures using peptide modified gellan gum substrates[J]. Biomaterials, 2015, 67: 264- 273
doi: 10.1016/j.biomaterials.2015.07.022
[1] 魏鑫伟, 高庆, 苏凯麒, 秦臻, 潘宇祥, 贺永, 王平. 结合组织工程支架的三维心肌细胞传感器[J]. 浙江大学学报(工学版), 2018, 52(7): 1415-1422.