计算机与控制工程 |
|
|
|
|
基于双向门控式宽度学习系统的监测数据结构变形预测 |
罗向龙1( ),王亚飞2,王彦博1,王立新3,4 |
1. 长安大学 信息工程学院,陕西 西安 710064 2. 中兴通讯股份有限公司,陕西 西安 710111 3. 中铁第一勘察设计院集团有限公司,陕西 西安 710043 4. 西安理工大学 土木建筑工程学院,陕西 西安 710048 |
|
Structural deformation prediction of monitoring data based on bi-directional gate board learning system |
Xianglong LUO1( ),Yafei WANG2,Yanbo WANG1,Lixin WANG3,4 |
1. School of Information Engineering, Chang’an University, Xi’an 710064, China 2. Zhongxing Telecom Equipment Corporation, Xi’an 710111, China 3. China Railway First Survey and Design Institute Group Limited Company, Xi’an 710043, China 4. School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an 710048, China |
引用本文:
罗向龙,王亚飞,王彦博,王立新. 基于双向门控式宽度学习系统的监测数据结构变形预测[J]. 浙江大学学报(工学版), 2024, 58(4): 729-736.
Xianglong LUO,Yafei WANG,Yanbo WANG,Lixin WANG. Structural deformation prediction of monitoring data based on bi-directional gate board learning system. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 729-736.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.04.008
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I4/729
|
1 |
ZHANG H, SHI X, LAI L Research on time series analysis based deformation prediction model[J]. Advanced Materials Research, 2011, 250-253: 2888- 2891
doi: 10.4028/www.scientific.net/AMR.250-253.2888
|
2 |
鄢士程, 解广成, 辛全明, 等 多监测条件下地铁明挖车站周边地表沉降预测分析[J]. 电子测量技术, 2022, 45 (2): 48- 54 YAN Shicheng, XIE Guangcheng, XIN Quanming, et al Prediction and analysis of surface settlement around subway open cut station under multi monitoring conditions[J]. Electronic Measurement Technology, 2022, 45 (2): 48- 54
|
3 |
CHEN C, LU X, LI J, et al A novel settlement forecasting model for rockfill dams based on physical causes[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 7973- 7988
doi: 10.1007/s10064-021-02403-2
|
4 |
GENG D, MA J, ZHAO Y. Electricity generation forecasting with wind power data: a grey model approach [C]// 2nd International Conference on Artificial Intelligence and Information Systems . [S. l.]: ACM, 2021: 17.
|
5 |
ZENG B, DUAN H, ZHOU Y A new multivariable grey prediction model with structure compatibility[J]. Applied Mathematical Modelling, 2019, 75: 385- 397
doi: 10.1016/j.apm.2019.05.044
|
6 |
ZHI Q, SONG J, GUO Z Prediction of soil creep deformation using unequal interval multivariable grey model[J]. Applied Mechanics and Materials, 2017, 864: 341- 345
doi: 10.4028/www.scientific.net/AMM.864.341
|
7 |
陶永虎, 饶军应, 熊鹏, 等 软岩隧道大变形预测模型及支护措施[J]. 矿业研究与开发, 2021, 41 (5): 59- 66 TAO Yonghu, RAO Junying, XIONG Peng, et al Large deformation prediction model and supporting measures of soft rock tunnel[J]. Mining Research and Development, 2021, 41 (5): 59- 66
|
8 |
张立亚, 张宏梅, 祝传广, 等 随机性非等间隔灰色模型在沉降预报中的应用[J]. 测绘地理信息, 2022, 47 (3): 38- 42 ZHANG Liya, ZHANG Hongmei, ZHU Chuanguang, et al Application of random non-equal interval grey model in settlement forecasting[J]. Journal of Geomatics, 2022, 47 (3): 38- 42
|
9 |
张峰瑞, 姜谙男, 赵亮, 等 基于多变量GP-DE模型的隧道变形时间序列预测研究[J]. 现代隧道技术, 2021, 58 (1): 109- 116 ZHANG Fengrui, JIANG Annan, ZHAO Liang, et al Study on time series prediction of the tunnel deformation based on the multivariable GP-DE model[J]. Modern Tunnelling Technology, 2021, 58 (1): 109- 116
|
10 |
刘建军, 王嘉伟, 陈琨, 等 时间序列回归预测模型在自动化监测中的应用[J]. 测绘通报, 2021, (6): 156- 158 LIU Jianjun, WANG Jiawei, CHEN Kun, et al The application of time series regression prediction model in automated monitoring[J]. Bulletin of Surveying and Mapping, 2021, (6): 156- 158
|
11 |
田有良, 樊廷立, 唐超 面向地铁隧道表面渗漏水的快速检测技术[J]. 测绘通报, 2022, (9): 29- 33 TIAN Youliang, FAN Tingli, TANG Chao Rapid detection technology for surface water leakage in subway tunnel[J]. Bulletin of Surveying and Mapping, 2022, (9): 29- 33
|
12 |
FLORED A, TITO H, CENTTY D. Comparison of hybrid recurrent neural networks for univariate time series forecasting [C]// Intelligent Systems and Applications . [S.l.]: Springer, 2021: 375–87.
|
13 |
FANG K, KIFER D, LAWSON K, et al The data synergy effects of time‐series deep learning models in hydrology[J]. Water Resources Research, 2022, 58 (4): 1- 18
|
14 |
XUE Y G, ZHANG X, LI S, et al Analysis of factors influencing tunnel deformation in loess deposits by data mining: a deformation prediction model[J]. Engineering Geology, 2018, 232: 94- 103
doi: 10.1016/j.enggeo.2017.11.014
|
15 |
HE Y, YAN H, YANG W, et al Time-series analysis and prediction of surface deformation in the Jinchuan Mining area, Gansu province, by using InSAR and CNN–PhLSTM network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 6732- 6751
doi: 10.1109/JSTARS.2022.3198728
|
16 |
QIU D W, WANG T, YE Q, et al A deformation prediction approach for supertall building using sensor monitoring system[J]. Journal of Sensors, 2019, 2019: 9283584
|
17 |
YANG B, YIN K, LACASSE S, et al Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 2019, 16: 677- 694
doi: 10.1007/s10346-018-01127-x
|
18 |
甘文娟, 陈永红, 韩静, 等 基于正交参数优化的LSTM结构变形预测模型[J]. 计算机系统应用, 2020, 29 (9): 212- 218 GAN Wenjuan, CHEN Yonghong, HAN Jing, et al Structure deformation prediction model based on LSTM and orthogonal parameter optimization[J]. Computer Systems and Applications, 2020, 29 (9): 212- 218
|
19 |
韩宇, 李剑, 马慧宇, 等 基于CNN-LSTM的桥梁结构损伤诊断方法[J]. 国外电子测量技术, 2021, 40 (7): 1- 6 HAN Yu, LI Jian, MA Huiyu, et al Bridge structural damage diagnosis method based on CNN-LSTM[J]. Foreign Electronic Measurement Technology, 2021, 40 (7): 1- 6
|
20 |
胡衍坤, 王宁, 刘枢, 等 时间序列模型和LSTM模型在水质预测中的应用研究[J]. 小型微型计算机系统, 2021, 42 (8): 1569- 1573 HU Yankun, WANG Ning, LIU Shu, et al Research on application of time series model and LSTM model in water quality prediction[J]. Journal of Chinese Computer Systems, 2021, 42 (8): 1569- 1573
|
21 |
BAI L H, XU H Accurate estimation of tidal level using bidirectional long short-term memory recurrent neural network[J]. Ocean Engineering, 2021, 235: 108765
doi: 10.1016/j.oceaneng.2021.108765
|
22 |
LUO X L, GAN W, WANG L, et al A deep learning prediction model for structural deformation based on temporal convolutional networks[J]. Computational Intelligence and Neuroscience, 2021, 2021: 8829639
|
23 |
王亚飞, 韩静, 郭凰, 等 基于Bi-LSTM的结构变形预测[J]. 计算机系统应用, 2021, 30 (11): 304- 309 WANG Yafei, HAN Jing, GUO Huang, et al Prediction of structural deformation based on Bi-LSTM[J]. Computer Systems and Applications, 2021, 30 (11): 304- 309
|
24 |
LUO J, ZHANG X Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction[J]. Applied Intelligence, 2022, 52: 1076- 1091
doi: 10.1007/s10489-021-02503-2
|
25 |
张羽飞, 孟凡勇, 王永千, 等 基于改进型LSTM的电力设备温度预测方法研究[J]. 电子测量与仪器学报, 2021, 35 (12): 167- 173 ZAHNG Yufei, MENG Feiyong, WANG Yongqian, et al Research on temperature prediction method of power equipment based on improved LSTM[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35 (12): 167- 173
|
26 |
孙曙光, 张婷婷, 王景芹, 等 基于连续小波变换和MTL-SEResNet的断路器故障程度评估[J]. 仪器仪表学报, 2022, 43 (6): 162- 173 SUN Shuguang, ZHANG Tingting, WANG Jingqing, et al Fault degree evaluation of circuit breakers based on continuous wavelet transform and MTL-SEResNet[J]. Chinese Journal of Scientific Instrument, 2022, 43 (6): 162- 173
|
27 |
CHO K, VAN MERRÌËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]// 2014 Conference on Empirical Methods in Natural Language Processing . Doha: Association for Computational Linguistics, 2014: 1724–1734.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|