土木工程、水利工程 |
|
|
|
|
基于时空深度学习模型的数值降水预报后处理 |
郑超昊1( ),尹志伟2,曾钢锋3,许月萍1,周鹏1,刘莉1,*( ) |
1. 浙江大学 建筑工程学院,浙江 杭州 310058 2. 台州市水利局 浙江 台州 318000 3. 台州市水利水电勘测设计院有限公司 浙江 台州 318000 |
|
Post-processing of numerical precipitation forecast based on spatial-temporal deep learning model |
Chao-hao ZHENG1( ),Zhi-wei YIN2,Gang-feng ZENG3,Yue-ping XU1,Peng ZHOU1,Li LIU1,*( ) |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Taizhou Water Resources Bureau, Taizhou 318000, China 3. Taizhou Water Resources & Hydropower Survey Designing Institute, Taizhou 318000, China |
引用本文:
郑超昊,尹志伟,曾钢锋,许月萍,周鹏,刘莉. 基于时空深度学习模型的数值降水预报后处理[J]. 浙江大学学报(工学版), 2023, 57(9): 1756-1765.
Chao-hao ZHENG,Zhi-wei YIN,Gang-feng ZENG,Yue-ping XU,Peng ZHOU,Li LIU. Post-processing of numerical precipitation forecast based on spatial-temporal deep learning model. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1756-1765.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.007
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1756
|
1 |
BLACUTT L, HERDIES D, GONCALVES L, et al Precipitation comparison for the CFSR, MERRA, TRMM 3B42 and combined scheme datasets in Bolivia[J]. Atmospheric Research, 2015, 163: 117- 131
doi: 10.1016/j.atmosres.2015.02.002
|
2 |
DUAN Z, LIU J Z, TUO Y, et al Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales[J]. Science of the Total Environment, 2016, 573: 1536- 1553
doi: 10.1016/j.scitotenv.2016.08.213
|
3 |
陈超辉, 王勇, 杜钧 欧洲业务集合预报系统进展[J]. 气象科技进展, 2020, 10 (2): 19- 29 CHEN Chao-hui, WANG Yong, DU Jun Overview of the European operational ensemble prediction systems[J]. Advances in Meteorological Science and Technology, 2020, 10 (2): 19- 29
doi: 10.3969/j.issn.2095-1973.2020.02.004
|
4 |
LI W, DUAN Q, WANG J Factors influencing the performance of regression-based statistical postprocessing models for short-term precipitation forecasts[J]. Weather and Forecasting, 2019, 34 (6): 2067- 2084
doi: 10.1175/WAF-D-19-0121.1
|
5 |
郝福亮, 王旭 数值集合降雨预测的校正后处理方法研究[J]. 水资源于水工程学报, 2022, 33 (2): 460- 465 HAO Fu-liang, WANG Xu Post-correction method of numerical ensemble rainfall prediction[J]. Journal of Water Resources and Water Engineering, 2022, 33 (2): 460- 465
|
6 |
代刊, 朱跃建, 毕宝贵 集合模式定量降水预报的统计后处理技术研究综述[J]. 气象学报, 2018, 76 (4): 493- 510 DAI Kan, ZHU Yue-jian, BI Bao-gui The review of statistical post-process technologies for quantitative precipitation forecast of ensemble prediction system[J]. Acta Meteorologica Sinica, 2018, 76 (4): 493- 510
doi: 10.11676/qxxb2018.015
|
7 |
ZHAO T, BENNETT J, WANG Q, et al How suitable is quantile mapping for postprocessing GCM precipitation forecasts?[J]. Journal of Climate, 2017, 30 (9): 3185- 3196
doi: 10.1175/JCLI-D-16-0652.1
|
8 |
ANDREW S, ZHAO T, QUAN J, et al A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments[J]. Hydrology and Earth System Sciences, 2018, 22 (2): 1615- 1628
doi: 10.5194/hess-22-1615-2018
|
9 |
ROBERTSON D, SHRESTHA D, WANG Q Post-processing rainfall forecasts from numerical weather predic-tion models for short-term streamflow forecasting[J]. Hydrology and Earth System Sciences Discussions, 2013, 10 (5): 6765- 6806
|
10 |
BAEZ V, ZAMBRANO B, BECK H, et al RF-MEP: a novel random forest method for merging gridded precipitation products and ground-based measurements[J]. Remote Sensing of Environment, 2020, 239: 111606
doi: 10.1016/j.rse.2019.111606
|
11 |
ROMILLY T, GEBREMICHAEL M Evaluation of satellite rainfall estimates over Ethiopian River basins[J]. Hydrology and Earth System Sciences, 2011, 15 (5): 1505- 1514
doi: 10.5194/hess-15-1505-2011
|
12 |
QIU M H, ZHAO P L, ZHANG K, et al. A short-term rainfall prediction model using multi-task convolutional neural networks [C]// 2017 IEEE International Conference on Data Mining. New Orleans: IEEE, 2017: 395–404.
|
13 |
KRASNOPOLSKY V, LIN Y A neural network nonlinear multi-model ensemble to improve precipitation forecasts over continental US[J]. Advances in Meteorology, 2012, 649450
|
14 |
皇甫江, 胡志群, 郑佳锋, 等 利用深度学习开展偏振雷达定量降水估测研究[J]. 气象学报, 2022, 80 (4): 565- 577 HUANGFU Jiang, HU Zhi-qun, ZHENG Jia-feng A study on polarization radar quantitative precipitation estimation using deep learning[J]. Acta Meteorologica Sinica, 2022, 80 (4): 565- 577
doi: 10.11676/qxxb2022.046
|
15 |
NI L L, WANG D, SINGH V P, et al Streamflow and rainfall forecasting by two long short-term memory-based models[J]. Journal of Hydrology, 2020, 583: 124296
doi: 10.1016/j.jhydrol.2019.124296
|
16 |
韩明星, 印萍, 褚忠信, 等 椒江流域水沙变化特征及人类活动影响[J]. 海洋地质前沿, 2022, 38 (12): 26- 39 HAN Ming-xing, YIN Ping, CHU Zhong-xin, et al Characteristics and influencing factors of water and sediment changes in Jiaojiang River Basin[J]. Marine Geology Frontiers, 2022, 38 (12): 26- 39
doi: 10.16028/j.1009-2722.2022.168
|
17 |
SHEN Y, ZHAO P, PAN Y, et al A high spatiotemporal gauge-satellite merged precipitation analysis over China[J]. Journal of Geophysical Research: Atmospheres, 2014, 119: 3063- 3075
doi: 10.1002/2013JD020686
|
18 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90
doi: 10.1145/3065386
|
19 |
LECUN Y, BENGIO Y, HINTON G Deep learning[J]. Nature, 2015, 521: 436- 444
doi: 10.1038/nature14539
|
20 |
WU H, YANG Q, LIU J, et al A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China[J]. Journal of Hydrology, 2020, 584: 124664
doi: 10.1016/j.jhydrol.2020.124664
|
21 |
郭换换, 智协飞, 段明铿 数值天气预报中的不一致性问题综述[J]. 气象科学, 2016, 36 (1): 134- 140 GUO Huan-huan, ZHI Xia-fei, DUAN Ming-keng A review of inconsistencies in numerical weather forecasting[J]. Journal of the Meteorological Sciences, 2016, 36 (1): 134- 140
doi: 10.3969/2014jms.0063
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|