自动化技术 |
|
|
|
|
基于改进生成对抗网络的书法字生成算法 |
李云红(),段姣姣,苏雪平,张蕾涛,于惠康,刘杏瑞 |
西安工程大学 电子信息学院,陕西 西安 710048 |
|
Calligraphy generation algorithm based on improved generative adversarial network |
Yun-hong LI(),Jiao-jiao DUAN,Xue-ping SU,Lei-tao ZHANG,Hui-kang YU,Xing-rui LIU |
School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China |
引用本文:
李云红,段姣姣,苏雪平,张蕾涛,于惠康,刘杏瑞. 基于改进生成对抗网络的书法字生成算法[J]. 浙江大学学报(工学版), 2023, 57(7): 1326-1334.
Yun-hong LI,Jiao-jiao DUAN,Xue-ping SU,Lei-tao ZHANG,Hui-kang YU,Xing-rui LIU. Calligraphy generation algorithm based on improved generative adversarial network. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1326-1334.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.007
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1326
|
1 |
程若然, 赵晓丽, 周浩军, 等 基于深度学习的中文字体风格转换研究综述[J]. 浙江大学学报: 工学版, 2022, 56 (3): 510- 519 CHENG Ruo-ran, ZHAO Xiao-li, ZHOU Hao-jun, et al Review of Chinese font style conversion based on deep learning[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (3): 510- 519
|
2 |
曾锦山, 陈琪, 王明文 基于田字格变换的自监督汉字字体生成[J]. 中国科学: 信息科学, 2022, 52 (1): 145- 159 ZENG Jin-shan, CHEN Qi, WANG Ming-wen Self-supervised font generation of Chinese characters based on Tian Zige transformation[J]. Science of China: Information Science, 2022, 52 (1): 145- 159
|
3 |
黄子君, 陈琪, 罗文兵 基于深度学习的汉字生成方法[J]. 计算机工程与应用, 2021, 57 (17): 29- 36 HUANG Zi-jun, CHEN Qi, LUO Wen-bing Chinese character generation method based on deep learning[J]. Computer Engineering and Application, 2021, 57 (17): 29- 36
doi: 10.3778/j.issn.1002-8331.2103-0297
|
4 |
TIAN Y. Rewrite [CP/OL]. [2022-08-02]. https://github.com/kaonashi-tyc/Rewrite.
|
5 |
ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE, 2017: 5967-5976.
|
6 |
TIAN Y. Zi2zi [CP/OL]. [2022-08-02]. https://github.com/kaonashi-tyc/zi2zi.
|
7 |
JIANG Y, LIAN Z, TANG Y, et al. DCFont: an end-to-end deep Chinese font generation system [C]// SIGGRAPH Asia 2017 Technical Briefs. New York: ACM, 2017: 1-4.
|
8 |
CHANG B, ZHANG Q, PAN S, et al. Generating handwritten Chinese characters using CycleGAN [C]// 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe: IEEE, 2018: 199-207.
|
9 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2242-2251.
|
10 |
REN C, LYU S, ZHAN H, et al SAFont: automatic font synthesis using self-attention mechanisms[J]. Australia Journal of Intelligent Information Processing Systems, 2019, 16 (2): 19- 25
|
11 |
WU S J, YANG C Y, HSU J Y. CalliGAN: style and structure-aware Chinese calligraphy character generator [EB/OL]. (2020-05-26) [2022-08-02]. https://arxiv.org/abs/2005.12500.
|
12 |
PARK S, CHUN S, CHA J, et al. Few-shot font generation with localized style representations and factorization [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2021, 35(3): 2393-2402.
|
13 |
XIE Y, CHEN X, SUN L, et al. DGFont: deformable generative networks for unsupervised font generation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 5130-5140.
|
14 |
PARK S, CHUN S, CHA J, et al. Multiple heads are better than one: few-shot font generation with multiple localized experts [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 13900-13909.
|
15 |
KONG Y, LUO C, MA W, et al. Look closer to supervise better: one-shot font generation via component-based discriminator [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 13482-13491.
|
16 |
ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANs [C]// Proceedings of the 34th International Conference on Machine Learning. Sydney: ACM, 2017, 70: 2642–2651.
|
17 |
TAIGMAN Y, POLYAK A, WOLF L. Unsupervised cross-domain image generation [EB/OL]. (2016-10-07) [2022-08-02]. https://arxiv.org/abs/1611.02200.
|
18 |
WANG Z, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612
doi: 10.1109/TIP.2003.819861
|
19 |
ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE, 2018: 586-595.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|