自动化技术 |
|
|
|
|
特征融合与分发的多专家并行推荐算法框架 |
杨哲1,2(),葛洪伟1,2,*(),李婷1,2 |
1. 江南大学 人工智能与计算机学院,江苏 无锡 214122 2. 江苏省模式识别与计算智能工程实验室,江苏 无锡 214122 |
|
Framework of feature fusion and distribution with mixture of experts for parallel recommendation algorithm |
Zhe YANG1,2(),Hong-wei GE1,2,*(),Ting LI1,2 |
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China 2. Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Wuxi 214122, China |
1 |
KHAWAR F, HANG X, TANG R, et al. Autofeature: searching for feature interactions and their architectures for click-through rate prediction [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. [S. l.]: ACM, 2020: 625-634.
|
2 |
HU D, WANG C, NIE F, et al. Dense multimodal fusion for hierarchically joint representation [C]// 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton: IEEE, 2019: 3941-3945.
|
3 |
CHENG H T, KOC L, HARMSEN J, et al. Wide and deep learning for recommender systems [C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston: ACM, 2016: 7-10.
|
4 |
RENDLE S. Factorization machines [C]// IEEE International Conference on Data Mining. Sydney: IEEE, 2010: 995-1000.
|
5 |
GUO H, TANG R, YE Y, et al. DeepFM: a factorization-machine based neural network for CTR prediction [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: AAAI, 2017: 1725-1731.
|
6 |
WANG R, SHIVANNA R, CHENG D, et al. DCN v2: improved deep & cross network and practical lessons for web-scale learning to rank systems [C]// Proceedings of the Web Conference. Ljubljana: ACM, 2021: 1785-1797.
|
7 |
BEUTEL A, COVINGTON P, JAIN S, et al. Latent cross: making use of context in recurrent recommender systems [C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. Marina Del Rey: ACM, 2018: 46-54.
|
8 |
QU Y, FANG B, ZHANG W, et al Product-based neural networks for user response prediction over multi-field categorical data[J]. ACM Transactions on Information Systems, 2018, 37 (1): 1- 35
|
9 |
ZHOU G, ZHU X, SONG C, et al. Deep interest network for click-through rate prediction [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: ACM, 2018: 1059-1068.
|
10 |
ZHOU G, MOU N, FAN Y, et al. Deep interest evolution network for click-through rate prediction[C]// Proceedings of the AAAI Conference on Artificial Intelligence. California: AAAI, 2019: 5941-5948.
|
11 |
WANG R, FU B, FU G, et al. Deep & cross network for ad click predictions [M]// Proceedings of the ADKDD'17. Halifax: ACM, 2017: 1-7.
|
12 |
SONG W, SHI C, XIAO Z, et al. Autoint: automatic feature interaction learning via self-attentive neural networks [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019: 1161-1170.
|
13 |
LIAN J, ZHOU X, ZHANG F, et al. xdeepfm: combining explicit and implicit feature interactions for recommender systems [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: ACM, 2018: 1754-1763.
|
14 |
HUANG T, SHE Q, WANG Z, et al GateNet: gating-enhanced deep network for click-through rate prediction[J]. ArXiv, 2020, 7 (1): 1- 7
|
15 |
CHEN B, WANG Y, LIU Z, et al. Enhancing explicit and implicit feature interactions via information sharing for parallel deep CTR models [C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. Queensland: ACM, 2021: 3757-3766.
|
16 |
MA J, ZHAO Z, YI X, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: ACM, 2018: 1930-1939.
|
17 |
HOLMES N P, SPENCE C Multisensory integration: space, time and superadditivity[J]. Current Biology, 2005, 15 (18): R762- R764
doi: 10.1016/j.cub.2005.08.058
|
18 |
ZHENG Z, XU P, ZOU X, et al CowClip: reducing CTR prediction model training time from 12 hours to 10 minutes on 1 GPU[J]. ArXiv, 2022, 4 (1): 1- 18
|
19 |
KINGMA D P, BA J Adam: a method for stochastic optimization[J]. ArXiv, 2014, 12 (1): 1- 13
|
20 |
HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification [C]// Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|