机械工程 |
|
|
|
|
轻量化机器人抓取位姿实时检测算法 |
宋明俊(),严文,邓益昭,张俊然,涂海燕*() |
1. 四川大学 电气工程学院,四川 成都 610065 |
|
Light-weight algorithm for real-time robotic grasp detection |
Mingjun SONG(),Wen YAN,Yizhao DENG,Junran ZHANG,Haiyan TU*() |
1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China |
引用本文:
宋明俊,严文,邓益昭,张俊然,涂海燕. 轻量化机器人抓取位姿实时检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 599-610.
Mingjun SONG,Wen YAN,Yizhao DENG,Junran ZHANG,Haiyan TU. Light-weight algorithm for real-time robotic grasp detection. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 599-610.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.017
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I3/599
|
1 |
刘亚欣, 王斯瑶, 姚玉峰, 等 机器人抓取检测技术的研究现状[J]. 控制与决策, 2020, 35 (12): 2817- 2828 LIU Yaxin, WANG Siyao, YAO Yufeng, et al Recent researches on robot autonomous grasp technology[J]. Control and Decision, 2020, 35 (12): 2817- 2828
|
2 |
BOHG J, MORALES A, ASFOUR T, et al Data-driven grasp synthesis: a survey[J]. IEEE Transactions on Robotics, 2014, 30 (2): 289- 309
doi: 10.1109/TRO.2013.2289018
|
3 |
仲训杲, 徐敏, 仲训昱, 等 基于多模特征深度学习的机器人抓取判别方法[J]. 自动化学报, 2016, 42 (7): 1022- 1029 ZHONG Xungao, XU Min, ZHONG Xunyu, et al Multimodal features deep learning for robotic potential grasp recognition[J]. Acta Automatica Sinica, 2016, 42 (7): 1022- 1029
|
4 |
杜学丹, 蔡莹皓, 鲁涛, 等 一种基于深度学习的机械臂抓取方法[J]. 机器人, 2017, 39 (6): 820- 828 DU Xuedan, CAI Yinghao, LU Tao, et al A robotic grasping method based on deep learning[J]. Robot, 2017, 39 (6): 820- 828
|
5 |
JIANG Y, MOSESON S, SAXENA A. Efficient grasping from RGBD images: learning using a new rectangle representation [C]// IEEE International Conference on Robotics and Automation . Shanghai: IEEE, 2011: 3304−3311.
|
6 |
LENZ I, LEE H, SAXENA A Deep learning for detecting robotic grasps[J]. The International Journal of Robotics Research, 2015, 34 (4/5): 705- 724
|
7 |
张云洲, 李奇, 曹赫, 等 基于多层级特征的机械臂单阶段抓取位姿检测[J]. 控制与决策, 2021, 36 (8): 1815- 1824 ZHANG Yunzhou, LI Qi, CAO He, et al Single-stage grasp pose detection of manipulator based on multi-level features[J]. Control and Decision, 2021, 36 (8): 1815- 1824
|
8 |
夏晶, 钱堃, 马旭东, 等 基于级联卷积神经网络的机器人平面抓取位姿快速检测[J]. 机器人, 2018, 40 (6): 794- 802 XIA Jing, QIAN Kun, MA Xudong, et al Fast planar grasp pose detection for robot based on cascaded deep convolutional neural networks[J]. Robot, 2018, 40 (6): 794- 802
|
9 |
喻群超, 尚伟伟, 张驰 基于三级卷积神经网络的物体抓取检测[J]. 机器人, 2018, 40 (5): 762- 768 YU Qunchao, SHANG Weiwei, ZHANG Chi Object grasp detecting based on three-level convolution neural network[J]. Robot, 2018, 40 (5): 762- 768
|
10 |
REDMON J, ANGELOVA A. Real-time grasp detection using convolutional neural networks [C]// IEEE International Conference on Robotics and Automation . Seattle: IEEE, 2015: 1316−1322.
|
11 |
KUMRA S, KANAN C. Robotic grasp detection using deep convolutional neural networks [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Vancouver: IEEE, 2017: 769−776.
|
12 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Las Vegas: IEEE, 2016: 770−778.
|
13 |
GUO D, SUN F C, LIU H P, et al. A hybrid deep architecture for robotic grasp detection [C]// IEEE International Conference on Robotics and Automation . Singapore: IEEE, 2017: 1609−1614.
|
14 |
CHU F J, XU R N, VELA P A Real-world multiobject, multigrasp detection[J]. IEEE Robotics and Automation Letters, 2018, 3 (4): 3355- 3362
doi: 10.1109/LRA.2018.2852777
|
15 |
ZHOU X W, LAN X G, ZHANG H B, et al. Fully convolutional grasp detection network with oriented anchor box [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Madrid: IEEE, 2018: 7223−7230.
|
16 |
MORRISON D, CORKE P, LEITNER J. Closing the loop for robotic grasping: a real-time, generative grasp synthesis approach [EB/OL]. (2018−05−15) [2023−02−06]. https://arxiv.org/abs/1804.05172v2.
|
17 |
KUMRA S, JOSHI S, SAHIN F. Antipodal robotic grasping using generative residual convolutional neural network [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Las Vegas: IEEE, 2020: 9626−9633.
|
18 |
CHENG H, WANG Y Y, MENG Max Q H. Grasp pose detection from a single RGB image [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems . Prague: IEEE, 2021: 4686−4691.
|
19 |
WANG S C, ZHOU Z L, KAN Z When transformer meets robotic grasping: exploits context for efficient grasp detection[J]. IEEE Robotics and Automation Letters, 2022, 7 (3): 8170- 8177
doi: 10.1109/LRA.2022.3187261
|
20 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network [C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Honolulu: IEEE, 2017: 6230−6239.
|
21 |
WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation [C]// IEEE Winter Conference on Applications of Computer Vision (WACV) . Lake Tahoe: IEEE, 2018: 1451−1460.
|
22 |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958
|
23 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision (ECCV) . Munich: Springer, 2018: 3−19.
|
24 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Nashville: IEEE, 2021: 13708−13717.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|