自动化技术 |
|
|
|
|
基于双注意力机制的多分支孪生网络目标跟踪 |
李晓艳( ),王鹏*( ),郭嘉,李雪,孙梦宇 |
西安工业大学 电子信息工程学院,陕西 西安 710021 |
|
Multi branch Siamese network target tracking based on double attention mechanism |
Xiao-yan LI( ),Peng WANG*( ),Jia GUO,Xue LI,Meng-yu SUN |
School of Electronic and Information Engineering, Xi’an Technological University, Xi’an 710021, China |
引用本文:
李晓艳,王鹏,郭嘉,李雪,孙梦宇. 基于双注意力机制的多分支孪生网络目标跟踪[J]. 浙江大学学报(工学版), 2023, 57(7): 1307-1316.
Xiao-yan LI,Peng WANG,Jia GUO,Xue LI,Meng-yu SUN. Multi branch Siamese network target tracking based on double attention mechanism. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1307-1316.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.005
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1307
|
1 |
BERTINETTO L, VALMADRE J, HENRIQUE J F, et al. Fully-convolutional siamese networks for object tracking [C]// European Conference on Computer Vision. Berlin: Springer, 2016: 850-865.
|
2 |
VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 2805-2813.
|
3 |
HE A, LUO C, TIAN X, et al. A twofold Siamese network for real-time object tracking [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4834-4843.
|
4 |
LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4282-4291.
|
5 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
6 |
WANG Q, ZHANG L, BERTINETTO L, et al. Fast online object tracking and segmentation: a unifying approach [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 1328-1338.
|
7 |
XU Y, WANG Z, LI Z, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines [C]// Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12549-12556.
|
8 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [EB/OL]. [2022-06-15].https://xueshu.baidu.com/usercenter/paper/show?paperid=93f237b1172b174c55f3bdfd91d2f2d2&site=xueshu_se&apm;hitarticle=1, 2022.6.10.
|
9 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
|
10 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
11 |
CAO Y, XU J, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond [C]// Proceedings of the IEEE International Conference on Computer Vision Workshops. Seoul: IEEE, 2019.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|