自动化技术 |
|
|
|
|
基于动态内并行潜结构投影的故障检测方法 |
孔祥玉1( ),陈雅琳1,2,罗家宇1,杨治艳3 |
1. 火箭军工程大学 导弹工程学院,陕西 西安 710025 2. 航空工业成都凯天电子股份有限公司,四川 成都 610091 3. 工业和信息化部电子第五研究所,广东 广州 511370 |
|
Fault detection method based on dynamic inner concurrent projection to latent structure |
Xiang-yu KONG1( ),Ya-lin CHEN1,2,Jia-yu LUO1,Zhi-yan YANG3 |
1. College of Missile Engineering, Rocket Force University of Engineering, Xi’an 710025, China 2. AVIC Chengdu Caic Electronics Limited Company, Chengdu 610091, China 3. China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China |
引用本文:
孔祥玉,陈雅琳,罗家宇,杨治艳. 基于动态内并行潜结构投影的故障检测方法[J]. 浙江大学学报(工学版), 2023, 57(7): 1297-1306.
Xiang-yu KONG,Ya-lin CHEN,Jia-yu LUO,Zhi-yan YANG. Fault detection method based on dynamic inner concurrent projection to latent structure. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1297-1306.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.004
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1297
|
1 |
刘强, 卓洁, 郎自强, 等 数据驱动的工业过程运行监控与自优化研究展望[J]. 自动化学报, 2018, 44 (11): 1944- 1956 LIU Qiang, ZHUO Jie, LANG Zi-qiang, et al Perspectives on data-driven operation monitoring and self-optimization of industrial processes[J]. Acta Automatica Sinica, 2018, 44 (11): 1944- 1956
doi: 10.16383/j.aas.2018.c180207
|
2 |
孔祥玉, 王晓兵, 李红增, 等 面向工业平稳/非平稳复杂系统的在线故障监测技术[J]. 浙江大学学报: 工学版, 2021, 55 (10): 1856- 1866 KONG Xiang-yu, WANG Xiao-bing, LI Hong-zeng, et al On-line fault monitoring technology for industrial stationary/nonstationary complex system[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1856- 1866
|
3 |
孙鹤. 数据驱动的复杂非平稳工业过程建模与监测[D]. 杭州: 浙江大学, 2018: 8−19. SUN He. Complex nonstationary industrial process modeling and monitoring based on data driven methods [D]. Hangzhou: Zhejiang University, 2018: 8−19.
|
4 |
张成, 郭青秀, 李元, 等 基于主元分析得分重构差分的故障检测策略[J]. 控制理论与应用, 2019, 36 (5): 774- 782 ZHANG Cheng, GUO Qing-xiu, LI Yuan, et al Fault detection strategy based on difference of score reconstruction associated with principal component analysis[J]. Control Theory and Applications, 2019, 36 (5): 774- 782
doi: 10.7641/CTA.2018.70915
|
5 |
ZENG Y Q, LOU Z J. The new PCA for dynamic and non-Gaussian processes [EB/OL]. [2022-05-05]. https://sci-hub.ee/.
|
6 |
顾炳斌, 熊伟丽 基于多块信息提取的PCA故障诊断方法[J]. 化工学报, 2019, 70 (2): 736- 749 GU Bing-bin, XIONG Wei-li Fault diagnosis based on PCA method with multi-block information extraction[J]. CIESC Journal, 2019, 70 (2): 736- 749
doi: 10.11949/j.issn.0438-1157.20180842
|
7 |
孔祥玉, 杨治艳, 罗家宇, 等 基于新息矩阵的独立成分分析故障检测方法[J]. 中南大学学报: 自然科学版, 2021, 52 (4): 1232- 1241 KONG Xiang-yu, YANG Zhi-yan, LUO Jia-yu, et al Fault detection method with independent component analysis based on innovation matrix[J]. Journal of Central South University: Science and Technology, 2021, 52 (4): 1232- 1241
|
8 |
刘舒锐, 彭慧, 李帅, 等 基于IJB-PCA-ICA算法的故障检测[J]. 化工学报, 2018, 69 (12): 5146- 5154 LIU Shu-rui, PENG Hui, LI Shuai, et al Fault detection based on IJB-PCA-ICA[J]. CIESC Journal, 2018, 69 (12): 5146- 5154
|
9 |
孔祥玉, 王晓兵, 罗家宇, 等 基于动态高效潜结构投影的质量相关故障检测[J]. 控制理论与应用, 2021, 38 (12): 2076- 2084 KONG Xiang-yu, WANG Xiao-bing, LUO Jia-yu, et al Quality-related fault detection based on dynamic efficient projection to latent structures[J]. Control Theory and Applications, 2021, 38 (12): 2076- 2084
doi: 10.7641/CTA.2021.00586
|
10 |
金鑫, 梁军 基于动态PLS框架的多变量无静差预测控制[J]. 浙江大学学报: 工学版, 2016, 50 (4): 750- 758 JIN Xin, LIANG Jun Multivariable offset free model predictive control in dynamic PLS framework[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (4): 750- 758
|
11 |
GAO X R, SHARDT Y Dynamic system modelling and process monitoring based on long-term dependency slow feature analysis[J]. Journal of Process Control, 2021, 105: 27- 47
doi: 10.1016/j.jprocont.2021.07.007
|
12 |
LI G, QIN S J, ZHOU D H Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46 (1): 204- 210
|
13 |
ZHOU D H, LI G, QIN S J Total projection to latent structures for process monitoring[J]. AIChE Journal, 2010, 56 (1): 168- 178
|
14 |
YIN S, DING S X, ZHANG P, et al Study on modifications of PLS approach for process monitoring[J]. IFAC Proc Volumes, 2011, 44 (1): 12389- 12394
doi: 10.3182/20110828-6-IT-1002.02876
|
15 |
PENG K, ZHANG K, YOU B, et al Quality-relevant fault monitoring based on efficient projection to latent structures with application to hot strip mill process[J]. IET Control Theory and Applications, 2015, 9 (7): 1135- 1145
doi: 10.1049/iet-cta.2014.0732
|
16 |
QIN S J, ZHENG Y Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures[J]. AIChE Journal, 2013, 59 (2): 496- 504
doi: 10.1002/aic.13959
|
17 |
孔祥玉, 曹泽豪, 安秋生, 等 偏最小二乘线性模型及其非线性动态扩展模型综述[J]. 控制与决策, 2018, 33 (9): 1537- 1548 KONG Xiang-yu, CAO Ze-hao, AN Qiu-sheng, et al Review of partial least squares linear models and their nonlinear dynamic expansion models[J]. Control and Decision, 2018, 33 (9): 1537- 1548
doi: 10.13195/j.kzyjc.2017.1306
|
18 |
RICKER N L The use of biased least-squares estimators for parameters in discrete-time pulse-response models[J]. Industrial and Engineering Chemistry Research, 1988, 27 (2): 343- 350
doi: 10.1021/ie00074a023
|
19 |
KU W, STORER R H, GEORGAKIS C Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30 (1): 179- 196
doi: 10.1016/0169-7439(95)00076-3
|
20 |
KASPAR M H, RAY W H Dynamic PLS modelling for process control[J]. Chemical Engineering Science, 1993, 48 (20): 3447- 3461
doi: 10.1016/0009-2509(93)85001-6
|
21 |
LAKSHMINARAYANAN S, SHAH S L, NANDAK- UMAR K Modeling and control of multivariable processes: dynamic PLS approach[J]. AIChE Journal, 1997, 43 (9): 2307- 2322
doi: 10.1002/aic.690430916
|
22 |
LI G, LIU B S, QIN S J, et al Quality relevant data-driven modeling and monitoring of multivariate dynamic processes: the dynamic T-PLS approach[J]. IEEE Transactions on Neural Networks, 2011, 22 (12): 2262- 2271
doi: 10.1109/TNN.2011.2165853
|
23 |
DONG Y, QIN S J Dynamic-inner partial least squares for dynamic data modeling[J]. IFAC-PapersOnLine, 2015, 48 (8): 117- 122
doi: 10.1016/j.ifacol.2015.08.167
|
24 |
DONG Y, QIN S J A novel dynamic PCA algorithm for dynamic data modeling and process monitoring[J]. Journal of Process Control, 2018, 67: 1- 11
doi: 10.1016/j.jprocont.2017.05.002
|
25 |
DONG Y, QIN S J Dynamic latent variable analytics for process operations and control[J]. Computers and Chemical Engineering, 2018, 114 (9): 69- 80
|
26 |
DONG Y, QIN S J Regression on dynamic PLS structures for supervised learning of dynamic data[J]. Journal of Process Control, 2018, 68: 64- 72
doi: 10.1016/j.jprocont.2018.04.006
|
27 |
KONG X Y, CAO Z H, AN Q S, et al Quality-related and process-related fault monitoring with online monitoring dynamic concurrent PLS[J]. IEEE Access, 2018, 6: 59074- 59086
doi: 10.1109/ACCESS.2018.2872790
|
28 |
QIN S J, DONG Y N, ZHU Q Q, et al Bridging systems theory and data science: a unifying review of dynamic latent variable analytics and process monitoring[J]. Annual Reviews in Control, 2020, 50 (1): 29- 48
|
29 |
DOWNS J J, VOGEL E F A plant-wide industrial process control problem[J]. Pergamon, 1993, 17 (3): 245- 255
|
30 |
JIANG Q C, YAN X F, LI J, et al PCA-ICA integrated with Bayesian method for non-Gaussian fault diagnosis[J]. Industrial and Engineering Chemistry Research, 2016, 55 (17): 4979- 4986
doi: 10.1021/acs.iecr.5b04023
|
31 |
宋凯, 王海清, 李平 PLS质量监控及其在Tennessee Eastman过程中的应用[J]. 浙江大学学报: 工学版, 2005, 39 (5): 657- 662 SONG Kai, WANG Hai-qing, LI Ping PLS quality monitoring and its application for Tennessee Eastman process[J]. Journal of Zhejiang University: Engineering Science, 2005, 39 (5): 657- 662
|
32 |
张展博, 王振雷, 王昕 基于正交局部慢性特征的故障检测方法[J]. 清华大学学报: 自然科学版, 2020, 60 (8): 693- 700 ZHANG Zhan-bo, WANG Zhen-lei, WANG Xin A fault detection method based on orthogonal local chronic features[J]. Journal of Tsinghua University: Natural Science Edition, 2020, 60 (8): 693- 700
|
33 |
张成, 潘立志, 李元 基于加权统计特征KICA的故障检测与诊断方法[J]. 化工学报, 2022, 73 (2): 827- 837 ZHANG Cheng, PAN Li-zhi, LI Yuan Fault detection and diagnosis method based on weighted statistical feature KICA[J]. CIESC Journal, 2022, 73 (2): 827- 837
|
34 |
韩宇, 李俊芳, 高强, 等 基于故障判别增强KECA算法的故障检测[J]. 化工学报, 2020, 71 (3): 1254- 1263 HAN Yu, LI Jun-fang, GAO Qiang, et al Fault detection based on fault discrimination enhanced kernel entropy component analysis algorithm[J]. CIESC Journal, 2020, 71 (3): 1254- 1263
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|