Please wait a minute...
J4  2009, Vol. 43 Issue (10): 1777-1782    DOI: 10.3785/j.issn.1008-973X.2009.10.006
机械工程     
基于双谱识别和人工免疫网络的智能故障检测
林勇,周晓军,杨先勇,张文斌
(浙江大学 现代制造工程研究所,浙江省先进制造技术重点研究实验室,浙江 杭州 310027)
Intelligent fault diagnosis methods based on bispectrum recognition and artificial immune network
LIN Yong,ZHOU Xiao-jun,YANG Xian-yong,ZHANG Wen-bin
(Institute of Manufacturing Engineering,Zhejiang Provincial Key Laboratory of Advanced Manufacturing Technology, Zhejiang University,Hangzhou 310027,China)
 全文: PDF(1227 KB)   HTML
摘要:

针对故障诊断中人为评估振动谱图而导致诊断结果不稳定的情况,提出基于振动谱图模式识别的故障诊断方法,利用Hilbert包络分析和双谱分析的组合方法来提取振动信号的故障频率特征,进而采用双谱图的灰度共生矩阵(GLCM)及其特征统计量来表征故障特征.改进了人工免疫网络(AIN)分类算法,将特征统计量作为抗原,通过对抗原的学习训练,形成记忆抗体集;通过判断待检验抗原与记忆抗体的匹配程度,实现故障分类识别.滚动轴承故障诊断实践证明,人工免疫网络分类方法具有良好的适应性,取得了较BP神经网络更好的检测准确率.

Abstract:

 A diagnosis method based on recognition of vibration spectra was developed aiming at the situation that manual observation of vibration spectra would lead to instability in the diagnosis. A combined method of Hilbert analysis and bispectrum analysis was proposed to extract the frequency characteristics from vibration signs. Then gray level co-occurrence matrix (GLCM) and its characteristic statistics generated from the bispectrum spectrum were selected to denote fault features. Furthermore, the artificial immune network (AIN) classification algorithm was improved by training the characteristic statistics as antigen and forming the memory antibody set. Fault classification was achieved through calculating the matching degree between test antigen and memory antibody set. Practice of the rolling bearing fault diagnosis shows that the AIN classification method has good adaptability, and achieved better detection accuracy than BP neural network.

出版日期: 2009-11-29
:  TP 277  
通讯作者: 周晓军,男,教授,博导.     E-mail: sky@cmee.zju.edu.cn
作者简介: 林勇(1980-),男,河南信阳人,博士生,从事基于图像模式识别的智能故障检测方法及其在车辆检测中的应用研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

林勇, 周晓军, 杨先勇, 等. 基于双谱识别和人工免疫网络的智能故障检测[J]. J4, 2009, 43(10): 1777-1782.

LIN Yong, ZHOU Xiao-Jun, YANG Xian-Yong, DENG. Intelligent fault diagnosis methods based on bispectrum recognition and artificial immune network. J4, 2009, 43(10): 1777-1782.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2009.10.006        http://www.zjujournals.com/eng/CN/Y2009/V43/I10/1777

[1] 刘肃平,陈强.数字图像处理技术在车牌识别中的应用[J]. 计算机与现代化,2006(8):119121.
LIU Su-ping,CHEN Qiang. Application of digital image processing techniques in license plate identification[J]. Computer and Modernization, 2006(8):119121.
[2] Bearing data center.Case western reserve university [EB/OL]. [2008-06-20]. http://www.eecs.cwru.edu/laboratory /bearing.
[3] 吴正国,夏立,尹为民.现代信号处理技术[M].武汉:武汉大学出版社,2003.
[4] HAWLICK R M. Statistical and structural approaches to texture [J]. Proceedings of IEEE, 1979, 67(5):786804.
[5] BARALDI A,PANNIGGIANI F. An investigation of the textural characteristics associated with gray level co-occurrence matrix statistical parameters [J]. IEEE Trans on Geoscience and Remote Sensing, 1995, 33(2):293304.
[6] DE CASTRO L N, VON ZUBEN F J. An evolutionary immune system network for data clustering [C]∥ Proceedings of the sixth Brazilian Symposium on Neural Networks. Oakland: IEEE Computer Socie:2000, 1:8489.
[7] 熊浩,孙才新,陈伟根,等.电力变压器故障检测的人工免疫网络分类算法[J].电力系统自动化,2006,30(6):5760.
XIONG Hao, SUN Cai-xin, CHEN Wei-gen, et al.Artifical immune network classification algorithm for fault diagnosis of power transformers [J]. Automation of Electric Power Systems, 2006, 30(6):5760.
[8]李德毅,刘常昱,杜鹢,等.不确定性人工智能[J].软件学报, 2004,15(11):15831594.
LI De-yi, LIU Chang-yu, DU Yi, et al. Artificial intelligence with uncertainty [J]. Journal of Software, 2004, 15(11): 15831594.

[1] 段斌, 梁军, 费正顺, 杨敏, 胡斌. 基于GA-ANN的非线性半参数建模方法[J]. J4, 2011, 45(6): 977-983.
[2] 徐贵斌, 周东华. 基于在线学习神经网络的状态依赖型故障预测[J]. J4, 2010, 44(7): 1251-1254.
[3] 杜文莉, 王坤, 钱锋. 基于特征空间降维的溶剂脱水分离过程监控[J]. J4, 2010, 44(7): 1255-1259.