土木工程、交通工程 |
|
|
|
|
基于时空融合的多头注意力车辆轨迹预测 |
宋秀兰1( ),董兆航1,单杭冠2,陆炜杰1 |
1. 浙江工业大学 信息工程学院,浙江 杭州 310023 2. 浙江大学 信息与电子工程学院,浙江 杭州 310027 |
|
Vehicle trajectory prediction based on temporal-spatial multi-head attention mechanism |
Xiu-lan SONG1( ),Zhao-hang DONG1,Hang-guan SHAN2,Wei-jie LU1 |
1. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023 2. College of Information and Electronic Engineering, Zhejiang University, Hangzhou 310027 |
引用本文:
宋秀兰,董兆航,单杭冠,陆炜杰. 基于时空融合的多头注意力车辆轨迹预测[J]. 浙江大学学报(工学版), 2023, 57(8): 1636-1643.
Xiu-lan SONG,Zhao-hang DONG,Hang-guan SHAN,Wei-jie LU. Vehicle trajectory prediction based on temporal-spatial multi-head attention mechanism. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1636-1643.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.08.016
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I8/1636
|
1 |
LI X L, XIA J, CHEN X Y, et al SIT: a spatial interaction-aware transformer-based model for freeway trajectory prediction[J]. ISPRS International Journal of Geo-Information, 2022, 11 (2): 79- 94
doi: 10.3390/ijgi11020079
|
2 |
ELNAGAR A. Prediction of moving objects in dynamic environments using kalman filters [C]// IEEE International Symposium on Computational Intelligence in Robotics and Automation. New York: IEEE, 2001: 414-419.
|
3 |
季学武, 费 聪, 何祥坤, 等 基于 LSTM 网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32 (6): 34- 42 JI Xue-wu, FEI Cong, HE Xiang-kun, et al Intention recognition and trajectory prediction for vehicles using LSTM network[J]. China Journal of Highway and Transport, 2019, 32 (6): 34- 42
|
4 |
韩皓, 谢天 基于注意力 Seq2Seq 网络的高速公路交织区车辆变道轨迹预测[J]. 中国公路学报, 2020, 33 (6): 106- 118 HAN Hao, XIE Tian Lane change trajectory prediction of vehicles in highway interweaving area using Seq2Seq-attention network[J]. China Journal of Highway and Transport, 2020, 33 (6): 106- 118
|
5 |
FEI C, HE X K, JI X Multi-modal vehicle trajectory prediction based on mutual information[J]. IET Intelligent Transport Systems, 2020, 14 (3): 148- 153
doi: 10.1049/iet-its.2019.0299
|
6 |
ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 961-971.
|
7 |
XIN L, WANG P, CHAN C, et al. Intention-aware long horizon trajectory prediction of surrounding vehicles using dual LSTM networks [C]// 21st International Conference on Intelligent Transportation Systems. New York: IEEE, 2018: 1441-1446.
|
8 |
HOU L, XIN L, LE S E, et al Interactive trajectory prediction of surrounding road users for autonomous driving using structural-LSTM network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (11): 4615- 4625
doi: 10.1109/TITS.2019.2942089
|
9 |
KIM B, KANG C M, KIM J, et al. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network [C]// IEEE 20th International Conference on Intelligent Transportation Systems. New York: IEEE, 2017: 399-404.
|
10 |
WU Y, CHEN G, LI Z, et al HSTA: a hierarchical spatio-temporal attention model for trajectory prediction[J]. IEEE Transactions on Vehicular Technology, 2021, 70 (11): 11295- 11307
doi: 10.1109/TVT.2021.3115018
|
11 |
DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2018: 1468-1476.
|
12 |
MO X Y, XING Y, LV C. Interaction-aware trajectory prediction of connected vehicles using CNN-LSTM networks [C]// 46th Annual Conference of the IEEE-Industrial- Electronics-Society (IECON). New York: IEEE, 2020: 5057-5062.
|
13 |
MUKHERJEE S, WANG S, WEALLACE A. Interacting vehicle trajectory prediction with convolutional recurrent neural networks [C]// IEEE International Conference on Robotics and Automation. New York: IEEE, 2020: 4336-4342.
|
14 |
GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative Adversarial networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2018: 2255-2264.
|
15 |
MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention [C]// 28th Conference on Neural Information Processing Systems. California: NeurIPS, 2014: 2204-2212.
|
16 |
LIN L, LI W Z, BI H K, et al Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms[J]. IEEE Intelligent Transportation Systems Magazine, 2021, 14 (2): 197- 208
|
17 |
YANG J, SUN X, WANG R G, et al PTPGC: pedestrian trajectory prediction by graph attention network with ConvLSTM[J]. Robotics and Autonomous Systems, 2022, 148: 103931- 103942
doi: 10.1016/j.robot.2021.103931
|
18 |
YAN J, PENG Z F, YIN H L, et al Trajectory prediction for intelligent vehicles using spatial-attention mechanism[J]. IET Intelligent Transport Systems, 2020, 14 (13): 1855- 1863
doi: 10.1049/iet-its.2020.0274
|
19 |
CHEN X B, ZHANG H J, ZHAO F, et al Intention-aware vehicle trajectory prediction based on spatial-temporal dynamic attention network for internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (10): 19471- 19483
doi: 10.1109/TITS.2022.3170551
|
20 |
MOHAMED A, QIAN K, ELHOSEINY M, et al. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2020: 14412-14420.
|
21 |
YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition [C]// AAAI Conference on Artificial Intelligence. California: AAAI, 2018, 32(1): 7444-7452.
|
22 |
XUE H, HUYNH D Q, REYNOLDS M A location-velocity-temporal attention LSTM model for pedestrian trajectory prediction[J]. IEEE ACCESS, 2020, 8: 44576- 44589
doi: 10.1109/ACCESS.2020.2977747
|
23 |
MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al Attention based vehicle trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6 (1): 175- 185
doi: 10.1109/TIV.2020.2991952
|
24 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// 31st Conference on Neural Information Processing Systems. California: NeurIPS, 2017: 5998-6008.
|
25 |
ZHAO T, XU Y, MONFORT M, et al. Multi-agent tensor fusion for contextual trajectory prediction [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019: 12118-12126.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|