计算机与控制工程 |
|
|
|
|
基于强化学习和3σ准则的组合剪枝方法 |
徐少铭( ),李钰*( ),袁晴龙 |
华东理工大学 信息科学与工程学院,上海 200237 |
|
Combination pruning method based on reinforcement learning and 3σ criterion |
Shao-ming XU( ),Yu LI*( ),Qing-long YUAN |
School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China |
21 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1251-1258.
|
22 |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [EB/OL]. (2017-04-17) [2022-12-10]. https: arxiv.org/pdf/1704.04861. pdf.
|
23 |
HE Y H, LIN J, LIU Z J, et al. AMC: AutoML for model compression and acceleration on mobile devices [C]// Proceedings of the European Conference on Computer Vision. [S. l.]: Springer, 2018: 815-832.
|
24 |
ASHOK A, RHINEHART N, BEAINY F, et al. N2N learning: network to network compression via policy gradient reinforcement learning [EB/OL]. (2017-12-17)[2022-12-10]. https://arxiv.org/pdf/1709.06030v1.pdf.
|
25 |
LIU Z C, MU H Y, ZHANG X Y, et al. MetaPruning: meta learning for automatic neural network channel pruning [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3296-3305.
|
26 |
LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning [EB/OL]. (2019-07-15)[2022-12-12]. https://arxiv.org/pdf/1509.02971.pdf.
|
27 |
LIN M B, JI R R, ZHANG Y X. Channel pruning via automatic structure search [EB/OL]. (2020-06-29)[2022-12-16]. https://arxiv.org/pdf/2001.08565.pdf.
|
28 |
HUANG Z Z, SHAO W Q, WANG X J. Rethinking the pruning criteria for convolutional neural network [C]// Conference and Workshop on Neural Information Processing Systems. Montreal: MIT Press, 2021, 34: 16305-16318.
|
29 |
盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京高等教育出版社, 2008: 112-114.
|
30 |
LIN S H, JI R R, YAN C Q, et al. Towards optimal structured CNN pruning via generative adversarial learning [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2790-2799.
|
31 |
LI H, KADAV A, DURDANOVIC I, et al. Pruning filters for efficient convnets [EB/OL]. (2017-03-10)[2022-12-20]. https://arxiv.org/pdf/1608.08710.pdf.
|
32 |
LUO J H, WU J X. An entropy-based pruning method for CNN compression [EB/OL]. (2017-06-19)[2022-12-20]. https: arxiv.org/pdf/1706.05791.pdf.
|
33 |
HU H Y, PENG R, TAI Y W, et al. Network trimming: a data-driven neuron pruning approach towards efficient deep architectures [EB/OL]. (2016-07-12)[2022-12-20]. https://arxiv.org/pdf/1607.03250.pdf.
|
1 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc, 2012: 1097-1105.
|
2 |
ZHANG L B, HUANG S L, LIU W. Intra-class part swapping for fine-grained image classification [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 3209-3218.
|
3 |
REN S K, HE K M, GIRSHICK R, et al. Object detection networks on convolutional feature maps [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017, 39(7): 1476-1481.
|
4 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
5 |
BLAIVAS M, ARNTFIELD R, WHITE M Creation and testing of a deep learning algorithm to automatically identify and label vessels, nerves, tendons, and bones on cross-sectional point-of-care ultrasound scans for peripheral intravenous catheter placement by novices[J]. Journal of Ultrasound in Medicine, 2020, 39 (9): 1721- 1727
doi: 10.1002/jum.15270
|
6 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440.
|
7 |
TANZI L, PIAZZOLLA P, PORPIGLIA F, et al Real-time deep learning semantic segmentation during intra-operative surgery for 3D augmented reality assistance[J]. International Journal of Computer Assisted Radiology and Surgery, 2021, 16: 1435- 1445
doi: 10.1007/s11548-021-02432-y
|
8 |
张哲晗, 方薇, 杜丽丽, 等 基于编码-解码卷积神经网络的遥感图像语义分割[J]. 光学学报, 2020, 40 (3): 46- 55 ZHANG Zhe-han, FANG Wei, DU Li-li, et al Semantic segmentation of remote sensing image based on coding-decoding convolutional neural network[J]. Acta Optica Sinica, 2020, 40 (3): 46- 55
|
9 |
吕永发. 基于深度学习的手机表面缺陷检测算法[D]. 郑州: 郑州大学, 2020. LV Yong-fa. Mobile phone surface detect detection algorithm based on deep learning [D]. Zhengzhou: Zhengzhou University, 2020.
|
10 |
JIANG Y, WANG W, ZHAO C. A machine vision-based realtime anomaly detection method for industrial products using deep learning [C]// 2019 Chinese Automation Congress. Hangzhou: IEEE, 2019: 4842-4847.
|
11 |
GONG R H, LIU X L, JIANG S H, et al. Differentiable soft quantization: bridging full-precision and low-bit neural networks [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 4852-4861.
|
12 |
COURBARIAUX M, HUBARA I, SOUDRY D, et al. Binarized neural networks: training neural networks with weights and activations constrained to +1 or −1 [EB/OL]. (2016-03-17)[2022-12-10]. https:arxiv.org/pdf/1602.02830.pdf.
|
13 |
LI F F, LIU B, WANG X X. Ternary weight networks [EB/OL]. (2022-11-20)[2022-12-10]. https://arxiv.org/pdf/1605.04711.pdf.
|
14 |
KALMAN D A singularly valuable decomposition: the SVD of a matrix[J]. The College Mathematics Journal, 1996, 27 (1): 2- 23
doi: 10.1080/07468342.1996.11973744
|
15 |
KIM Y D, PARK E, YOO S, et al. Compression of deep convolutional neural networks for fast and low power mobile applications [EB/OL]. (2016-12-24) [2022-12-10]. https://arxiv.org/pdf/1511.06530.pdf.
|
16 |
LATHAUWER L D Decompositions of a higher-order tensor in block terms[J]. SIAM Journal on Matrix Analysis and Applications, 2008, 30 (3): 1022- 1032
doi: 10.1137/060661685
|
17 |
ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer [EB/OL]. (2017-12-12)[2022-12-10]. https://arxiv.org/pdf/1612.03928.pdf.
|
18 |
ZHANG L F, SONG J B, GAO A, et al. Be your own teacher: improve the performance of convolutional neural networks via self distillation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3713-3722.
|
19 |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5MB model size [EB/OL]. (2016-11-04)[2022-12-10]. https:arxiv.org/pdf/1602.07360.pdf.
|
20 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848-6856.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|