Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (3): 495-502    DOI: 10.3785/j.issn.1008-973X.2023.03.007
计算机与控制工程     
结合社交影响和长短期偏好的个性化推荐算法
周青松(),蔡晓东*(),刘家良
桂林电子科技大学 信息与通信学院,广西 桂林 541004
Personalized recommendation algorithm combining social influence and long short-term preference
Qing-song ZHOU(),Xiao-dong CAI*(),Jia-liang LIU
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
 全文: PDF(793 KB)   HTML
摘要:

针对基于会话的推荐算法只捕获用户的短期动态兴趣,忽略长期兴趣和社交好友对用户行为的影响,提出结合社交影响和长短期偏好的推荐算法. 设计新颖的异构关系图来组织用户的社交关系和历史会话,提出基于注意力机制的异构图神经网络对图进行学习,得到融合用户社交影响的长期偏好. 针对社交影响力不一致容易引入噪声的问题,提出加权剪枝策略,减少了噪声干扰且丰富了图结构信息. 利用无损的会话建模方法捕获用户的短期偏好,将短期偏好与长期偏好进行自适应融合,得到反映用户全局偏好的特征表示. Gowalla和Delicious数据集上的实验结果表明,所提方法的各项指标相比现有先进方法均有显著提升,证明了所提算法的有效性.

关键词: 推荐算法社交影响长短期偏好加权剪枝策略异构关系图异构图神经网络    
Abstract:

Session-based recommendation algorithms only capture users’ short-term dynamic interests, ignoring the impact of long-term interests and social friends on their behavior. To address the problem, a recommendation algorithm combining social influence and long short-term preferences was proposed. Firstly, a novel heterogeneous relation graph was designed to organize users’ social relations and historical interaction behaviors. And a heterogeneous graph neural network based on the attention mechanism was proposed to learn the graph, and to obtain long-term preference for integrating social influence of users. Moreover, considering the problem of noise caused by inconsistent social influence, a weighted and pruning strategy was proposed to reduce noise interference and enrich the graph structure information. Then, a lossless session modeling method was used to capture users’ short-term preference. Finally, users’ short-term preference and long-term preference were adaptively fused to obtain a feature representation that reflects users’ global preferences. Experimental results on Gowalla and Delicious datasets show that the indicators of the proposed method are significantly improved compared with the existing advanced methods, which proves the effectiveness of the proposed algorithm.

Key words: recommendation algorithm    social influence    long short-term preference    weighted and pruning strategy    heterogeneous relation graph    heterogeneous graph neural network
收稿日期: 2022-03-09 出版日期: 2023-03-31
CLC:  TP 391  
基金资助: 广西创新驱动发展专项(AA20302001)
通讯作者: 蔡晓东     E-mail: 1796296884@qq.com;caixiaodong@guet.edu.cn
作者简介: 周青松(1997—),男,硕士生,从事数据挖掘和推荐算法研究. orcid.org/0000-0003-2396-1691. E-mail: 1796296884@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周青松
蔡晓东
刘家良

引用本文:

周青松,蔡晓东,刘家良. 结合社交影响和长短期偏好的个性化推荐算法[J]. 浙江大学学报(工学版), 2023, 57(3): 495-502.

Qing-song ZHOU,Xiao-dong CAI,Jia-liang LIU. Personalized recommendation algorithm combining social influence and long short-term preference. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 495-502.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.03.007        https://www.zjujournals.com/eng/CN/Y2023/V57/I3/495

图 1  结合社交影响和长短期偏好的个性化推荐算法模型的整体框架图
数据集 $ |U| $ $ |V| $ 交互数 会话数 社交关系数
Gowalla 33654 40473 1130463 258628 283972
Delicious 1313 5781 266044 60397 9130
表 1  2个实验数据集的统计信息
模型 Gowalla Delicious
HR@20 MMR@20 HR@20 MMR@20
NARM 49.93 23.58 46.45 20.36
DGRec 50.44 24.05 47.43 20.69
LESSR 51.76 25.41 47.84 21.40
FLCSP 52.52 25.75 48.53 21.58
SLSPR 55.13 27.35 51.67 23.53
表 2  结合社交影响和长短期偏好的个性化推荐算法(SLSPR)模型的有效性实验结果
模型 Gowalla Delicious
HR@20 MMR@20 HR@20 MMR@20
LESSR 51.76 25.41 47.84 21.40
SLSPR 55.13 27.35 51.67 23.53
SLSPR-UU 54.53 26.78 50.94 23.06
表 3  用户社交关系和长期偏好的有效性对比
模型 Gowalla Delicious
HR@20 MMR@20 HR@20 MMR@20
SLSPR 55.13 27.35 51.67 23.53
SLSPR-WP 54.74 27.07 51.26 23.23
表 4  加权剪枝操作的有效性对比
$ \theta $ Gowalla Delicious
Ns P/% Ns P/%
012345 283 972116 71457 48029 15415 9869 384 10041.1020.2410.275.633.30 9 1307 9326 3924 5742 8741 266 10086.8870.0150.1031.4813.87
表 5  社交影响力阈值对社交关系数量的影响
图 2  社交影响力阈值对推荐性能的影响
1 WANG S, CAO L, WANG Y, et al A survey on session-based recommender systems[J]. ACM Computing Surveys, 2022, 54 (7): 1- 38
2 HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks [EB/OL]. [2022-03-09]. https://arxiv.org/pdf/1511.06939.pdf.
3 MIKOLOV T, KARAFIAT M, BURGET L, et al. Recurrent neural network based language model [C]// Interspeech. Chiba: [s. n.], 2010: 1045-1048.
4 LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation [C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 1419-1428.
5 LIU Q, ZENG Y, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: ACM, 2018: 1831-1839.
6 KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2022-03-09]. https://arxiv.org/pdf/1609.02907.pdf.
7 HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs [C]// Proceedings of the 31st International Conference Neural Information Processing Systems. Long Beach: [s. n.], 2017: 1025-1035.
8 WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 346-353.
9 ZHANG Z, WANG B Fusion of latent categorical prediction and sequential prediction for session-based recommendation[J]. Information Sciences, 2021, 569: 125- 137
doi: 10.1016/j.ins.2021.04.019
10 CHEN T, WONG R C W. Handling information loss of graph neural networks for session-based recommendation [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S. l.]: ACM, 2020: 1172-1180.
11 PANG Y, WU L, SHEN Q, et al. Heterogeneous global graph neural networks for personalized session-based recommendation [C]// Proceeding of the 15th ACM International Conference on Web Search and Data Mining. [S. l.]: ACM, 2022: 775-783.
12 MA H, ZHOU D, LIU C, et al. Recommender systems with social regularization [C]// Proceedings of the 4th ACM International Conference on Web Search and Data Mining. Hong Kong: ACM, 2011: 287-296.
13 ZHAO T, MCAULEY J, KING I. Leveraging social connections to improve personalized ranking for collaborative filtering [C]// Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. Shanghai: ACM, 2014: 261-270.
14 XIAO L, MIN Z, YONGFENG Z, et al. Learning and transferring social and item visibilities for personalized recommendation [C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 337-346.
15 FAN W, MA Y, LI Q, et al. Graph neural networks for social recommendation [C]// The World Wide Web Conference. San Francisco: [s. n.], 2019: 417-426.
16 SONG W, XIAO Z, WANG Y, et al. Session-based social recommendation via dynamic graph attention networks [C]// Proceedings of the 12th ACM International Conference on Web Search and Data Mining. Melbourne: ACM, 2019: 555-563.
17 GU P, HAN Y, GAO W, et al Enhancing session-based social recommendation through item graph embedding and contextual friendship modeling[J]. Neurocomputing, 2021, 419: 190- 202
doi: 10.1016/j.neucom.2020.08.023
18 FU B, ZHANG W, HU G, et al. Dual side deep context-aware modulation for social recommendation [C]// Proceedings of the Web Conference 2021. Ljubljana: [s. n.], 2021: 2524-2534.
[1] 徐少铭,李钰,袁晴龙. 基于强化学习和3σ准则的组合剪枝方法[J]. 浙江大学学报(工学版), 2023, 57(3): 486-494.
[2] 刘坤,杨晓松. 基于无监督域适应的跨场景带钢表面缺陷识别[J]. 浙江大学学报(工学版), 2023, 57(3): 477-485.
[3] 曾耀,高法钦. 基于改进YOLOv5的电子元件表面缺陷检测算法[J]. 浙江大学学报(工学版), 2023, 57(3): 455-465.
[4] 陆昱翔,徐冠华,唐波. 基于视觉Transformer时空自注意力的工人行为识别[J]. 浙江大学学报(工学版), 2023, 57(3): 446-454.
[5] 程艳芬,吴家俊,何凡. 基于关系门控图卷积网络的方面级情感分析[J]. 浙江大学学报(工学版), 2023, 57(3): 437-445.
[6] 杨长春,叶赞挺,刘半藤,王柯,崔海东. 基于多源信息融合的医学图像分割方法[J]. 浙江大学学报(工学版), 2023, 57(2): 226-234.
[7] 苏丰龙,景宁. 基于关系聚合的时序知识图谱表示学习[J]. 浙江大学学报(工学版), 2023, 57(2): 235-242.
[8] 杨帆,宁博,李怀清,周新,李冠宇. 基于语义增强特征融合的多模态图像检索模型[J]. 浙江大学学报(工学版), 2023, 57(2): 252-258.
[9] 周天琪,杨艳,张继杰,殷少伟,郭增强. 基于无负样本损失和自适应增强的图对比学习[J]. 浙江大学学报(工学版), 2023, 57(2): 259-266.
[10] 刘超,孔兵,杜国王,周丽华,陈红梅,包崇明. 高阶互信息最大化与伪标签指导的深度聚类[J]. 浙江大学学报(工学版), 2023, 57(2): 299-309.
[11] 卢巧杰,王楠,李金宝,李坤. 融合用户感知和多因素的兴趣点推荐[J]. 浙江大学学报(工学版), 2023, 57(2): 310-319.
[12] 何佳壕,刘喜平,舒晴,万常选,刘德喜,廖国琼. 带复杂计算的金融领域自然语言查询的SQL生成[J]. 浙江大学学报(工学版), 2023, 57(2): 277-286.
[13] 黄华,赵秋舸,何再兴,李嘉然. 基于LSTM与牛顿迭代的两轴系统轮廓误差控制[J]. 浙江大学学报(工学版), 2023, 57(1): 10-20.
[14] 叶晨,战洪飞,林颖俊,余军合,王瑞,钟武昌. 基于推理-情境感知激活模型的设计知识推荐[J]. 浙江大学学报(工学版), 2023, 57(1): 32-46.
[15] 凤丽洲,杨阳,王友卫,杨贵军. 基于Transformer和知识图谱的新闻推荐新方法[J]. 浙江大学学报(工学版), 2023, 57(1): 133-143.