Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (11): 2175-2186    DOI: 10.3785/j.issn.1008-973X.2023.02.008
机械与能源工程     
电场作用下锥形孔穴表面微细通道内流动沸腾传热特性
罗小平(),李桂中,李景生,彭子哲
华南理工大学 机械与汽车工程学院,广东 广州 510640
Flow boiling heat transfer characteristics of in micro channels with tapered cavity surface under electric field
Xiao-ping LUO(),Gui-zhong LI,Jing-sheng LI,Zi-zhe PENG
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
 全文: PDF(3479 KB)   HTML
摘要:

为了探究电场作用下锥形孔穴表面微细通道内R141b制冷剂的流动沸腾传热特性,研制不同孔穴直径、孔穴密度的锥形孔穴表面微细通道板. 在设计系统压力142 kPa、入口温度34.5 ℃、热流密度7.72~25.11 kW/m2条件下进行流动沸腾试验,对比分析不同孔穴直径、孔穴密度的微细通道电场强化传热效果. 对比锥形孔穴表面微细通道和光滑表面微细通道的沿程传热特性,以进一步分析锥形孔穴对电场强化传热效果的影响. 为了研究电场对受限气泡的影响,采用COMSOL软件对微细通道内电场分布进行数值模拟,并结合可视化结果分析电场对受限气泡长径比的影响. 研究结果表明:在有效热流密度区间内,孔穴密度相同、孔穴直径大的微细通道电场强化传热效果更明显,并且平均饱和沸腾传热系数最大提升了10.1%;孔穴直径相同、孔穴密度大的微细通道,电场强化传热效果更明显,并且平均饱和沸腾传热系数最大提升了19.3%. 锥形孔穴表面微细通道的电场强化传热效果优于光滑表面微细通道,电场作用下的微细通道内受限气泡的长径比与无电场时相比更小.

关键词: 微细通道制冷剂电场锥形孔穴流动沸腾    
Abstract:

The micro channels heat sink with various diameters and densities tapered cavity was made to explore flow boiling heat transfer of the R141b refrigerant in micro channels heat sink with tapered cavity under electric field. The flow boiling experiment was carried out under the conditions of design system pressure of 142 kPa, inlet temperature of 34.5 ℃ and heat flux of 7.72~25.11 kW/m2. The electric field enhances heat transfer effect of the micro channels with different cavity diameters and cavity densities was compared and analyzed. The heat transfer characteristics along the path of the micro channels with tapered cavity surface and the micro channels with smooth surface were compared to further analyze the influence of tapered cavity on the heat transfer enhancement by electric field. In order to investigative effect of electric field on confined bubble, the COMSOL software was used to numerically simulate electric field distribution in micro channels and the effect of electric field on confined bubble aspect ratio was analyzed by visualization results. The results showed that the micro channels with the same cavity density but larger cavity diameter in the effective heat flux range had more obvious heat transfer enhancement effect by electric field and average saturated boiling heat transfer coefficient was increased by 10.1%. The micro channels with same cavity diameter but the larger cavity density had more obvious heat transfer enhancement effect by electric field and average saturated boiling heat transfer coefficient was increased by 19.3%. The heat transfer enhancement effect of the micro channels with tapered cavity is better than that of the micro channels with smooth surface under electric field. The aspect ratio of confined bubbles in the micro channels under electric field is smaller than that without electric field.

Key words: micro channels    refrigerant    electric field    tapered cavity    flow boiling
收稿日期: 2021-12-02 出版日期: 2022-12-02
CLC:  TK 124  
基金资助: 国家自然科学基金资助项目(22178118);广东省自然科学基金资助项目(2019A1515011053)
作者简介: 罗小平(1967—),男,教授,博士,主要从事微通道相变传热特性研究. orcid.org/0000-0002-5838-310X. E-mail: mmxpluo@scut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
罗小平
李桂中
李景生
彭子哲

引用本文:

罗小平,李桂中,李景生,彭子哲. 电场作用下锥形孔穴表面微细通道内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2022, 56(11): 2175-2186.

Xiao-ping LUO,Gui-zhong LI,Jing-sheng LI,Zi-zhe PENG. Flow boiling heat transfer characteristics of in micro channels with tapered cavity surface under electric field. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2175-2186.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.02.008        https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2175

图 1  微细通道流动沸腾试验系统示意图
操作条件变量 数值
qe/(kW·m?2 1.93~25.11
G/(kg·m?2·s?1 115.90、231.80
P/kPa 142
ΔTsub,in/℃ 7.70
U/V 0、400、600、800
表 1  微细通道内流动沸腾试验操作条件
图 2  微细通道试验段结构图
图 3  测温点分布图
图 4  单个微细通道截面示意图
图 5  微细通道热沉锥形孔穴示意图
型号 Wch
/mm
Hch
/mm
L1
/mm
L2
/mm
Dc
/mm
H1
/mm
N1 N2
#1 2.0 2.0 1.5 0.7 0.5 0.5 3 4 818
#2 2.0 2.0 1.5 0.7 0.3 0.5 3 4 818
#3 2.0 2.0 1.5 0.7 0.5 0.5 2 3 212
#4 2.0 2.0
表 2  微细通道锥形孔穴参数
图 6  #1微细通道锥形孔穴实拍与形貌图
图 7  微细通道试验段热损失率随热流密度的变化
测量参数不确定性 计算参数不确定性
参数 相对不确定度/% 参数 相对不确定度/%
V ±2.50 G ±1.50
P ±0.50 qe ±3.94
T ±0.22 Tf ±5.25
U ±0.50 h ±8.27
表 3  试验主要参数的不确定性
图 8  #1微细通道第4测温点沸腾曲线
图 9  锥形孔穴微细通道平均饱和沸腾传热系数对比
图 10  锥形孔穴微细通道电场强化因子对比
图 11  小气泡行为高速摄像图及气泡脱离示意图
图 12  不同微细通道沿程传热特性对比
图 13  微细通道电场分布仿真的计算域网格及边界条件设置
图 14  微细通道电场分布仿真的网格无关性检验
图 15  电压800 V作用下微细通道内电场分布
图 16  纵截面(x=1截面)上气液界面电场力分布
图 17  横截面(z=3截面)上气液界面电场力分布
图 18  2种通道出口区域的受限气泡大小对比
1 LING W, ZHOU W, YU W, et al Experimental investigation on thermal and hydraulic performance of micro channels with interlaced configuration[J]. Energy Conversion and Management, 2018, 174: 439- 452
doi: 10.1016/j.enconman.2018.08.054
2 邱云龙, 胡文杰, 吴昌聚, 等 嵌入式微通道传热特性及局部热点尺度效应[J]. 浙江大学学报:工学版, 2021, 372 (4): 665- 674
QIU Yun-long, HU Wen-jie, WU Chang-ju, et al Heat transfer performance and scale effect of hot spots in embedded micro channel cooling system[J]. Journal of Zhejiang University: Engineering Science, 2021, 372 (4): 665- 674
3 DIAO Y H, GUO L, LIU Y, et al Electric field effect on the bubble behavior and enhanced heat-transfer characteristic of a surface with rectangular microgrooves[J]. International Journal of Heat and Mass Transfer, 2014, 78: 371- 379
doi: 10.1016/j.ijheatmasstransfer.2014.07.004
4 BOZIUK T R, SMITH M K, GLEZER A Enhanced boiling heat transfer on plain and featured surfaces using acoustic actuation[J]. International Journal of Heat and Mass Transfer, 2017, 108: 181- 190
doi: 10.1016/j.ijheatmasstransfer.2016.11.071
5 AMINFAR H, MOHAMMADPOURFARD M, MAROOFIAZAR R Experimental study on the effect of magnetic field on critical heat flux of ferrofluid flow boiling in a vertical annulus[J]. Experimental Thermal and Fluid Science, 2014, 58: 156- 169
doi: 10.1016/j.expthermflusci.2014.06.023
6 ZU Y Q, YAN Y Y A numerical investigation of electro-hydrodynamic (EHD) effects on bubble deformation under pseudo-nucleate boiling conditions[J]. International Journal of Heat and Fluid Flow, 2009, 30 (4): 761- 767
doi: 10.1016/j.ijheatfluidflow.2009.03.008
7 ZHANG J, LUO X, FENG Z, et al Effects of pin and wire electrodes on flow boiling heat transfer enhancement in a vertical mini channel heat sink[J]. International Journal of Heat and Mass Transfer, 2019, 136: 740- 754
doi: 10.1016/j.ijheatmasstransfer.2019.03.043
8 DIAO Y H, LIU Y, ZHANG J, et al Effect of electric field on the enhanced heat transfer characteristic of an evaporator with multilayered sintered copper mesh[J]. Journal of Electrostatics, 2015, 73: 26- 32
doi: 10.1016/j.elstat.2014.10.005
9 KANO I Sub cooled flow boiling under an electric field on surface enhanced by diamond particles deposition[J]. International Journal of Heat and Mass Transfer, 2019, 134: 959- 969
doi: 10.1016/j.ijheatmasstransfer.2019.01.033
10 LI H W, CHANG T L, DU C H, et al Effects of electric field on flow boiling heat transfer characteristics in a micro channel heat sink with various orientations[J]. International Journal of Heat and Mass Transfer, 2021, 181: 121878
doi: 10.1016/j.ijheatmasstransfer.2021.121878
11 WAN W, DENG D X, HUANG Q S, et al Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks[J]. Applied Thermal Engineering, 2017, 114: 436- 449
doi: 10.1016/j.applthermaleng.2016.11.182
12 AZIZIFAR S, AMERI M, BEHROYAN I Experimental investigation of the sub cooled flow boiling heat transfer of water and nano fluids in a horizontal metal foam tube[J]. Heat and Mass Transfer, 2021, 57 (9): 1499- 1511
doi: 10.1007/s00231-021-03042-9
13 KUO C J, PELES Y Local measurement of flow boiling in structured surface micro channels[J]. International Journal of Heat and Mass Transfer, 2007, 50 (23-24): 4513- 4526
doi: 10.1016/j.ijheatmasstransfer.2007.03.047
14 LI Y, XIA G, JIA Y, et al Experimental investigation of flow boiling performance in micro channels with and without triangular cavities – a comparative study[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1511- 1526
doi: 10.1016/j.ijheatmasstransfer.2017.01.011
15 YU C K, LU D C, CHENG T C Pool boiling heat transfer on artificial micro-cavity surfaces in dielectric fluid FC-72[J]. Journal of Micromechanics and Micro Engineering, 2006, 16 (10): 2092- 2099
doi: 10.1088/0960-1317/16/10/024
16 DONG L, QUAN X, CHENG P An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano structures[J]. International Journal of Heat and Mass Transfer, 2014, 71: 189- 196
doi: 10.1016/j.ijheatmasstransfer.2013.11.068
17 HE Z, YAN Y, ZHANG L Thermal-hydraulic investigation on micro heat sinks with ribbed pin-fin arrays and single heating input: parametrical study[J]. Journal of Thermal Analysis and Calorimetry, 2021, 57: 2081- 2095
18 OTOMO Y, GALICIA E S, ENOKI K Enhancement of subcooled flow boiling heat transfer with high porosity sintered fiber metal[J]. Applied Sciences, 2021, 11 (3): 1- 14
19 BANKOFF S G Entrapment of gas in the spreading of a liquid over a rough surface[J]. AICHE Journal, 1958, 4 (1): 24- 26
doi: 10.1002/aic.690040105
20 HSU Y Y Closure to “discussions of ‘on the size range of active nucleation cavities on a heating surface’ ”[J]. Journal of Heat Transfer, 1962, 84 (3): 207- 213
doi: 10.1115/1.3684339
21 MA D D, TANG Y X, XIA G D Experimental investigation of flow boiling performance in sinusoidal wavy micro channels with secondary channels[J]. Applied Thermal Engineering, 2021, 199: 117502
doi: 10.1016/j.applthermaleng.2021.117502
22 LI H W, ZHANG C Z, YANG D, et al Experimental investigation on flow boiling heat transfer characteristics of R141b refrigerant in parallel small channels filled with metal foam[J]. International Journal of Heat and Mass Transfer, 2019, 133: 21- 35
doi: 10.1016/j.ijheatmasstransfer.2018.12.048
23 BOGOJEVIC D, SEFIANE K, DUURSMA G, et al Bubble dynamics and flow boiling instabilities in micro channels[J]. International Journal of Heat and Mass Transfer, 2013, 58 (1): 663- 675
24 TANG Y, CHEN C, ZHANG S, et al Effects of structural parameter on flow boiling performance of interconnected micro channel net[J]. Applied Thermal Engineering, 2017, 112: 164- 173
doi: 10.1016/j.applthermaleng.2016.10.050
25 LAW M, LEE P Effects of varying secondary channel widths on flow boiling heat transfer and pressure characteristics in oblique-finned micro channels[J]. International Journal of Heat and Mass Transfer, 2016, 101: 313- 326
doi: 10.1016/j.ijheatmasstransfer.2016.05.055
26 QU W, MUDAWAR I Flow boiling heat transfer in two-phase micro-channel heat sinks––I. Experimental investigation and assessment of correlation methods[J]. International Journal of Heat and Mass Transfer, 2003, 46 (15): 2755- 2771
doi: 10.1016/S0017-9310(03)00041-3
27 MOFFAT R J Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1 (1): 3- 17
doi: 10.1016/0894-1777(88)90043-X
28 ZHOU J, LUO X, PAN Y, et al Flow boiling heat transfer coefficient and pressure drop in mini channels with artificial activation cavities by direct metal laser sintering[J]. Applied Thermal Engineering, 2019, 160: 113837
doi: 10.1016/j.applthermaleng.2019.113837
29 SEO H, LIM Y, SHIN H, et al Effects of hole patterns on surface temperature distributions in pool boiling[J]. International Journal of Heat and Mass Transfer, 2018, 120: 587- 596
doi: 10.1016/j.ijheatmasstransfer.2017.12.066
30 高明, 章立新, 全晓军, 等 电场作用下矩形肋表面汽泡运动规律研究[J]. 工程热物理学报, 2016, 37 (7): 1484- 1489
GAO Ming, ZHANG Li-xin, QUAN Xiao-jun, et al Investigation of boiling bubble dynamics on a rib heating surface under an electric field[J]. Journal of Engineering Thermophysics, 2016, 37 (7): 1484- 1489
31 CHEN F, PENG Y, SONG Y Z, et al EHD behavior of nitrogen bubbles in DC electric fields[J]. Experimental Thermal and Fluid Science, 2007, 32 (1): 174- 181
doi: 10.1016/j.expthermflusci.2007.03.006
32 DONG W, LI R Y, YU H L, et al An investigation of behaviors of a single bubble in a uniform electric field[J]. Experimental Thermal and Fluid Science, 2006, 30 (6): 579- 586
doi: 10.1016/j.expthermflusci.2005.12.003
[1] 马振宏,刘振,殷胜勇,马榕蔚,闫克平. 高压纳秒脉冲电场消融黑色素瘤细胞实验研究[J]. 浙江大学学报(工学版), 2021, 55(6): 1168-1174.
[2] 林飞宏,周吉,张建培,杨国华,杨青. 反射式小型光学电场传感器[J]. 浙江大学学报(工学版), 2021, 55(11): 2207-2214.
[3] 王强,罗坤,吴春雷,樊建人. 耦合风电场参数化模型的天气预报模式对风资源的评估和验证[J]. 浙江大学学报(工学版), 2019, 53(8): 1572-1581.
[4] 连启祥,杜志叶,金硕,杨知非,黄国栋,阮江军. 采用瞬态上流元法的油纸绝缘瞬态电场研究[J]. 浙江大学学报(工学版), 2019, 53(2): 399-406.
[5] 唐苇羽, 陈景祥, 韩锦程, 何燕, 李蔚, 刘志春. 不同强化换热管内流动沸腾换热特性对比[J]. 浙江大学学报(工学版), 2018, 52(6): 1216-1222.
[6] 唐伟佳, 江道灼, 尹瑞, 梁一桥, 王玉芬. 模块化隔离型直流变换器的同轴变压器设计[J]. 浙江大学学报(工学版), 2017, 51(8): 1646-1652.
[7] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[8] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[9] 崔雨辰,段浩,张聪,吴筱敏. 高频交流电场的频率对预混稀燃火焰的影响[J]. 浙江大学学报(工学版), 2015, 49(5): 944-949.
[10] 寇艳芹, 郑超, 徐羽贞, 黄逸凡, 刘振, 闫克平. 低场强脉冲电场杀灭水中大肠杆菌的实验研究[J]. 浙江大学学报(工学版), 2015, 49(4): 806-812.
[11] 寇艳芹, 郑超, 徐羽贞, 黄逸凡, 刘振, 闫克平. 低场强脉冲电场杀灭水中大肠杆菌的实验研究[J]. 浙江大学学报(工学版), 2014, 48(11): 3-4.
[12] 徐英, 洪治. 偏置电场对THz辐射强度影响的蒙特卡罗模拟[J]. J4, 2012, 46(5): 899-904.
[13] 金伟良,许晨. 钢筋脱钝氯离子阈值快速测定新方法[J]. J4, 2011, 45(3): 520-525.
[14] 洪荣华 陈琪 陈光明 张锐. 一种新型替代制冷剂爆炸极限的实验研究[J]. J4, 2008, 42(4): 712-714.
[15] 严晖 顾培夫. 一维光栅结构中电场分布的计算分析[J]. J4, 2008, 42(2): 299-302.