计算机技术 |
|
|
|
|
面向服务聚类的短文本优化主题模型 |
陆佳炜1,2( ),郑嘉弘1,李端倪1,徐俊1,肖刚1,2,*( ) |
1. 浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 2. 中国计量大学 机电工程学院,浙江 杭州 310018 |
|
Short text optimized topic model for service clustering |
Jia-wei LU1,2( ),Jia-hong ZHENG1,Duan-ni LI1,Jun XU1,Gang XIAO1,2,*( ) |
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China 2. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China |
引用本文:
陆佳炜,郑嘉弘,李端倪,徐俊,肖刚. 面向服务聚类的短文本优化主题模型[J]. 浙江大学学报(工学版), 2022, 56(12): 2416-2425.
Jia-wei LU,Jia-hong ZHENG,Duan-ni LI,Jun XU,Gang XIAO. Short text optimized topic model for service clustering. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2416-2425.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.12.010
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I12/2416
|
1 |
曹步清, 肖巧翔, 张祥平, 等 融合 SOM 功能聚类与 DeepFM 质量预测的 API 服务推荐方法[J]. 计算机学报, 2019, 42 (6): 1367- 1383 CAO Bu-qing, XIAO Qiao-xiang, ZHANG Xiang-ping, et al An API service recommendation method via combining self-organization map-based functionality clustering and deep factorization machine-based quality prediction[J]. Chinese Journal of Computers, 2019, 42 (6): 1367- 1383
doi: 10.11897/SP.J.1016.2019.01367
|
2 |
RUPASINGHA R A H M, PAIK I, KUMARA B T G S Specificity-aware ontology generation for improving Web service clustering[J]. IEICE Transactions on Information and Systems, 2018, E101.D (8): 2035- 2043
doi: 10.1587/transinf.2017EDP7395
|
3 |
石敏, 刘建勋, 周栋, 等 基于多重关系主题模型的Web服务聚类方法[J]. 计算机学报, 2019, 42 (4): 820- 836 SHI Min, LIU Jian-Xun, ZHOU Dong, et al Multi-relational topic model-based approach for Web services clustering[J]. Chinese Journal of Computers, 2019, 42 (4): 820- 836
doi: 10.11897/SP.J.1016.2019.00820
|
4 |
CHEN J, GONG Z, LIU W A nonparametric model for online topic discovery with word embeddings[J]. Information Sciences, 2019, 504: 32- 47
doi: 10.1016/j.ins.2019.07.048
|
5 |
BLEI D M, NG A Y, JORDAN M I Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993- 1022
|
6 |
YAN X, GUO J, LAN Y, et al. A biterm topic model for short texts [C]// Proceedings of the 22nd International Conference on World Wide Web. [S.l.]: Association for Computing Machinery, 2013: 1445-1456.
|
7 |
PANG J, LI X, XIE H, et al. SBTM: topic modeling over short texts [C]// International Conference on Database Systems for Advanced Applications. [S. l.]: Springer, 2016: 43-56.
|
8 |
MEHROTRA R, SANNER S, BUNTINE W, et al. Improving LDA topic models for microblogs via tweet pooling and automatic labeling [C]// Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: Association for Computing Machinery, 2013: 889-892.
|
9 |
LI X, WANG Y, ZHANG A, et al Filtering out the noise in short text topic modeling[J]. Information Sciences, 2018, 456: 83- 96
doi: 10.1016/j.ins.2018.04.071
|
10 |
LI C, WANG H, ZHANG Z, et al. Topic modeling for short texts with auxiliary word embeddings [C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: Association for Computing Machinery, 2016: 165-174.
|
11 |
肖巧翔, 曹步清, 张祥平, 等 基于 Word2Vec 和 LDA 主题模型的 Web 服务聚类方法[J]. 中南大学学报: 自然科学版, 2018, 49 (12): 2979- 2985 XIAO Qiao-xiang, CAO Bu-qing, ZHANG Xiang-ping, et al Web services clustering based on Word2Vec and LDA topic model[J]. Journal of Central South University: Science and Technology, 2018, 49 (12): 2979- 2985
|
12 |
ZUO Y, WU J, ZHANG H, et al. Topic modeling of short texts: a pseudo-document view [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S. l.]: Association for Computing Machinery, 2016: 2105-2114.
|
13 |
ZHU B, CAI Y, ZHANG H. Sparse biterm topic model for short texts [C]// Asia-Pacific Web and Web-Age Information Management Joint International Conference on Web and Big Data. [S. l.]: Springer, 2021: 227-241.
|
14 |
ZUO Y, LI C, LIN H, et al Topic modeling of short texts: a pseudo-document view with word embedding enhancement[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (1): 972- 985
|
15 |
NGUYEN D Q, BILLINGSLEY R, DU L, et al Improving topic models with latent feature word representations[J]. Transactions of the Association for Computational Linguistics, 2015, 3: 299- 313
doi: 10.1162/tacl_a_00140
|
16 |
HU R, LIU J, WEN Y. SP-BTM: a specific part-of-speech btm for service clustering [C]// 2020 IEEE International Conference on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking. Exeter: IEEE, 2020: 1050-1057.
|
17 |
YIN J, WANG J. A dirichlet multinomial mixture model-based approach for short text clustering [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S.l.]: Association for Computing Machinery, 2014: 233-242.
|
18 |
CHEN J, GONG Z, LIU W A Dirichlet process biterm-based mixture model for short text stream clustering[J]. Applied Intelligence, 2020, 50: 1609- 1619
doi: 10.1007/s10489-019-01606-1
|
19 |
GOLDBERG Y, LEVY O. Word2vec explained: deriving Mikolov et al. ’s negative-sampling word-embedding method [EB/OL]. [2022-01-16]. https://arxiv.org/pdf/1402.3722.pdf.
|
20 |
LU H Y, XIE L Y, KANG N, et al. Don’t forget the quantifiable relationship between words: using recurrent neural network for short text topic discovery [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2017: 1192-1198.
|
21 |
XIA Y, TANG N, HUSSAIN A, et al. Discriminative Bi-term topic model for headline-based social news clustering [C]// Proceedings of the 28th International Florida Artificial Intelligence Research Society Conference. [S.l.]: Association for the Advancement of Artificial Intelligence, 2015: 311-316.
|
22 |
RODRIGUEZ A, LAIO A Clustering by fast search and find of density peaks[J]. Science, 2014, 344 (6191): 1492- 1496
doi: 10.1126/science.1242072
|
23 |
XU H, LIU B, SHU L, et al. Lifelong domain word embedding via meta-learning [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2018: 4510-4516.
|
24 |
NEWMAN D, LAU J H, GRIESER K, et al. Automatic evaluation of topic coherence [C]// HumaN Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Los Angeles: Association of Computional Linguistics, 2010: 100-108.
|
25 |
唐明, 朱磊, 邹显春 基于Word2Vec的一种文档向量表示[J]. 计算机科学, 2016, 43 (6): 214- 217 TANG Ming, ZHU Lei, ZOU Zian-chun Document vector representation based on Word2Vec[J]. Computer Science, 2016, 43 (6): 214- 217
doi: 10.11896/j.issn.1002-137X.2016.06.043
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|