计算机技术 |
|
|
|
|
带复杂计算的金融领域自然语言查询的SQL生成 |
何佳壕( ),刘喜平*( ),舒晴,万常选,刘德喜,廖国琼 |
江西财经大学 信息管理学院,江西 南昌 330013 |
|
SQL generation from natural language queries with complex calculations on financial data |
Jia-hao HE( ),Xi-ping LIU*( ),Qing SHU,Chang-xuan WAN,De-xi LIU,Guo-qiong LIAO |
School of Information Management, Jiangxi University of Finance and Economics, Nanchang 330013, China |
引用本文:
何佳壕,刘喜平,舒晴,万常选,刘德喜,廖国琼. 带复杂计算的金融领域自然语言查询的SQL生成[J]. 浙江大学学报(工学版), 2023, 57(2): 277-286.
Jia-hao HE,Xi-ping LIU,Qing SHU,Chang-xuan WAN,De-xi LIU,Guo-qiong LIAO. SQL generation from natural language queries with complex calculations on financial data. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 277-286.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.02.008
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I2/277
|
1 |
曹金超, 黄滔, 陈刚, 等 自然语言生成多表SQL查询语句技术研究[J]. 计算机科学与探索, 2020, 14 (7): 1133- 1141 CAO Jin-chao, HUANG Tao, CHEN Gang, et al Research on technology of generating multi-table SQL query statement by natural language[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14 (7): 1133- 1141
doi: 10.3778/j.issn.1673-9418.1908025
|
2 |
潘璇, 徐思涵, 蔡祥睿, 等 基于深度学习的数据库自然语言接口综述[J]. 计算机研究与发展, 2021, 58 (9): 1925- 1950 PAN Xuan, XU Si-han, CAI Xiang-rui, et al Survey on deep learning based natural language interface to database[J]. Journal of Computer Research and Development, 2021, 58 (9): 1925- 1950
doi: 10.7544/issn1000-1239.2021.20200209
|
3 |
ZHONG V, XIANG C, SOCHER R. Seq2SQL: generating structured queries from natural language using reinforcement learning [EB/OL]. (2017-11-20). http://arxiv.org/abs/1709.00103.
|
4 |
YU T, ZHANG R, YANG K, et al. Spider: a large-scale human-labeled dataset for complex and cross-domain semantic parsing and Text-To-SQL task [EB/OL]. (2019-02-02). http://arxiv.org/abs/1809.08887.
|
5 |
百度NLP. 语义解析(Text-to-SQL)技术研究及应用 [EB/OL]. [2022-07-01]. https://zhuanlan.zhihu.com/p/269478469.
|
6 |
BAIK C, JAGADISH H V, LI Y. Bridging the semantic gap with SQL query logs in natural language interfaces to databases [C]// Proceedings of ICDE 2019. Macao: IEEE, 2019: 374–385.
|
7 |
LI F, JAGADISH H V Constructing an interactive natural language interface for relational databases[J]. Proceedings of the VLDB Endowment, 2014, 8 (1): 73- 84
doi: 10.14778/2735461.2735468
|
8 |
SONG D, SCHILDER F, SMILEY C, et al. TR discover: a natural language interface for querying and analyzing interlinked datasets [C] // Proceedings of ISWC 2015. Bethlehem: Springer, 2015: 21–37.
|
9 |
YAGHMAZADEH N, WANG Y, DILLIG I, et al. SQLizer: query synthesis from natural language [C]// Proceedings of the ACM on Programming Languages. New York: ACM. 2017: 1-26.
|
10 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [EB/OL]. (2016-05-19). http://arxiv.org/abs/1409.0473.
|
11 |
XU X, LIU C, SONG D. SQLNet: generating structured queries from natural language without reinforcement learning [EB/OL]. (2017-11-20). https://arxiv.org/abs/1711.04436.
|
12 |
YU T, YASUNAGA M, YANG K, et al. SyntaxSQLNet: syntax tree networks for complex and cross-domain Text-to-SQL task [C]// Proceedings of EMNLP 2018. Brussels: ACL, 2018: 1653–1663.
|
13 |
LEI W, WANG W, MA Z, et al. Re-examining the role of schema linking in Text-to-SQL [C]// Proceedings of EMNLP 2020. [s.l.]: ACL, 2020: 6943–6954.
|
14 |
CHOI D, SHIN M C, KIM E, et al RYANSQL: recursively applying sketch-based slot fillings for complex Text-to-SQL in cross-domain databases[J]. Computational Linguistics, 2021, 47 (2): 309- 332
|
15 |
HEMPHILL C T, GODFREY J J, DODDINGTON G R. The ATIS spoken language systems pilot corpus [EB/OL]. (2020-11-20). https://aclanthology.org/H90-1021.pdf.
|
16 |
ZELLE J M, MOONEY R J. Learning to parse database queries using inductive logic programming [C]// Proceedings of AAAI 1996. Portland Oregon: AAAI Press, 1996: 1050–1055.
|
17 |
MIN Q, SHI Y, ZHANG Y. A pilot study for chinese SQL semantic parsing [EB/OL]. (2019-10-16). http://arxiv.org/abs/1909.13293.
|
18 |
SUN N, YANG X, LIU Y. TableQA: a large-scale chinese Text-to-SQL dataset for table-aware SQL generation [EB/OL]. (2020-06-10). https://arxiv.org/abs/2006.06434.
|
19 |
LIANG C, YU Y, JIANG H, et al. BOND: BERT-assisted open-domain named entity recognition with distant supervision [C]// Proceedings of ACM SIGKDD 2020. [s.l.]: ACM, 2020: 1054–1064.
|
20 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of NAACL 2019. Minneapolis: ACL, 2019: 4171–4186.
|
21 |
JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification [C]// Proceedings of EACL 2017. Valencia: ACL, 2017: 427–431.
|
22 |
LIU P, QIU X, HUANG X. Recurrent neural network for text classification with multi-task learning [C]// Proceedings of IJCAI 2016. New York: AAAI Press, 2016: 2873–2879.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|