Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (5): 855-864    DOI: 10.3785/j.issn.1008-973X.2023.05.001
计算机技术与控制工程     
基于改进Transformer的复合故障解耦诊断方法
王誉翔1,2(),钟智伟1,2,夏鹏程1,2,黄亦翔1,2,*(),刘成良1,2
1. 上海交通大学 机械与动力工程学院,上海 200240
2. 上海交通大学 机械系统与振动国家重点实验室,上海 200240
Compound fault decoupling diagnosis method based on improved Transformer
Yu-xiang WANG1,2(),Zhi-wei ZHONG1,2,Peng-cheng XIA1,2,Yi-xiang HUANG1,2,*(),Cheng-liang LIU1,2
1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(2584 KB)   HTML
摘要:

大多复合故障诊断方法视复合故障为一种新的单一故障类型,忽视了内部单一故障的相互作用、故障分析粒度含糊和解释性差. 为了解决复合故障难解耦的问题,针对工业环境中复合故障数据极少的情况,提出一种基于改进Transformer的复合故障解耦诊断方法. 诊断流程分为预处理、特征提取和故障解耦3个步骤. 故障解耦引入Transformer的解码器,利用交叉注意力机制使得每个单一故障标签可以在提取的特征层中,自适应地关注到与故障特征相对应的判别特征区域,进一步预测每个单一故障标签的输出概率以实现复合故障解耦. 设计多组复合故障试验与业界先进算法进行对比,以验证方法的有效性. 结果表明,所提方法在少量单一故障训练样本和极少量复合故障训练样本情况下,有较高的诊断准确度. 当训练集中复合故障样本数仅为5时,复合故障诊断准确度达到88.29%,与其他方法比较更具有显著优势.

关键词: 复合故障诊断故障解耦分类器Transformer卷积神经网络旋转机械    
Abstract:

Most of the compound fault diagnosis methods regard the compound fault as a new single fault type, ignoring the interaction of internal single faults, and the fault analysis is vague in granularity and poor in interpretation. An improved Transformer-based compound fault decoupling diagnosis method was proposed for industrial environments with very little compound fault data. The diagnosis process included pre-processing, feature extraction and fault decoupling. With introducing the decoder of the Transformer, the cross-attention mechanism enables each single fault label to adaptively in the extracted feature layer focus on the discriminative feature region corresponding to the fault feature and predicts the output probability to achieve compound fault decoupling. Compound fault tests were designed to verify the effectiveness of the method compared with the advanced algorithms. The results showed that the proposed method had high diagnostic accuracy with a small number of single fault training samples and a very small number of compound fault training samples. The compound fault diagnosis accuracy reached 88.29% when the training set contained only 5 compound fault samples. Thus the new method has a significant advantage over other methods.

Key words: compound fault diagnosis    decoupling fault classifier    Transformer    convolution neural network    rotating machinery
收稿日期: 2022-07-25 出版日期: 2023-05-09
CLC:  TP 181:TH 165+.3  
基金资助: 国家自然科学基金资助项目(51975356)
通讯作者: 黄亦翔     E-mail: me_wyx@sjtu.edu.cn;huang.yixiang@sjtu.edu.cn
作者简介: 王誉翔(1998—),男,硕士生,从事多标签分类和复合故障诊断研究. orcid.org/0000-0002-8753-3947X. E-mail: me_wyx@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王誉翔
钟智伟
夏鹏程
黄亦翔
刘成良

引用本文:

王誉翔,钟智伟,夏鹏程,黄亦翔,刘成良. 基于改进Transformer的复合故障解耦诊断方法[J]. 浙江大学学报(工学版), 2023, 57(5): 855-864.

Yu-xiang WANG,Zhi-wei ZHONG,Peng-cheng XIA,Yi-xiang HUANG,Cheng-liang LIU. Compound fault decoupling diagnosis method based on improved Transformer. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 855-864.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.05.001        https://www.zjujournals.com/eng/CN/Y2023/V57/I5/855

图 1  故障解耦分类器和传统故障分类器的区别
图 2  传感器采集的振动信号
图 3  预处理后的STFT图像
图 4  基于改进Transformer的复合故障解耦诊断方法流程图
层数 类型 核大小 步长 输出通道数
1-1 Convolutional2d 5*5 1*1 512
1-2 ReLU ? ? 512
1-3 Max-pooling 2*2 2*2 512
2-1 Convolutional2d 5*5 1*1 300
2-2 ReLU ? ? 300
2-3 Max-pooling 2*2 2*2 300
3-1 Convolutional2d 5*5 1*1 $ {d}_{0} $
3-2 ReLU ? ? $ {d}_{0} $
表 1  特征提取模块的网络模型详细参数
图 5  动力传动故障诊断综合试验台
图 6  动力传动故障诊断综合试验台示意简图
图 7  3个不同故障组合的复合故障行星齿轮
齿轮序号 健康状态 复合故障标签
1 正常 NR
2 裂纹 RC
3 断齿 CP
4 缺齿 MS
5 磨损 WR
6 点蚀 PT
7 断齿+点蚀 CP+PT
8 裂纹+磨损 RC+WR
9 裂纹+缺齿 RC+MS
表 2  本研究实验所用行星齿轮的健康状态
图 8  不同复合故障样本数训练下的复合故障诊断准确度
图 9  每种复合故障的样本数为5时2种方法的诊断结果混淆矩阵
图 10  对 3 段振动数据处理得到的 STFT 图像和多头注意力图像.
1 乔美英, 汤夏夏, 闫书豪, 等 基于改进稀疏滤波与深度网络融合的轴承故障诊断[J]. 浙江大学学报: 工学版, 2020, 54 (12): 2301- 2309
QIAO Mei-ying, TANG Xia-xia, YAN Shu-hao, et al Bearing fault diagnosis based on improved sparse filter and deep network fusion[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (12): 2301- 2309
2 FENG Z, GAO A, LI K, et al Planetary gearbox fault diagnosis via rotary encoder signal analysis[J]. Mechanical Systems and Signal Processing, 2021, 149: 107325
doi: 10.1016/j.ymssp.2020.107325
3 XIA P, HUANG Y, XIAO D, et al. Ball screw health indicator construction with limited monitoring data and health assessment based on global context network[C]// 2021 IEEE International Conference on Sensing, Diagnostics, Prognostics and Control (SDPC). Weihai: IEEE, 2021: 168-173.
4 姚锡凡, 景轩, 张剑铭, 等 走向新工业革命的智能制造[J]. 计算机集成制造系统, 2020, 26 (9): 2299- 2320
YAO Xi-fan, JING Xuan, ZHANG Jian-ming, et al Towarads smart manufacturing for new industrial revolution[J]. Computer Integrated Manufacturing Systems, 2020, 26 (9): 2299- 2320
5 李杰, 李响, 许元铭, 等 工业人工智能及应用研究现状及展望[J]. 自动化学报, 2020, 46 (10): 2031- 2044
LI Jie, LI Xiang, XU Yuan-ming, et al Recent advances and prospects in industrial AI and applications[J]. Acta Automatica Sinica, 2020, 46 (10): 2031- 2044
doi: 10.16383/j.aas.200501
6 吴守军, 冯辅周, 吴春志, 等 复合行星轮系故障诊断方法研究进展[J]. 机械科学与技术, 2019, 38 (12): 1910- 1920
WU Shou-jun, FENG Fu-zhou, WU Chun-zhi, et al Research progress on fault diagnosis methods of compound planetary gear train[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38 (12): 1910- 1920
7 LI G, LIANG X, FANGYI L Model-based analysis and fault diagnosis of a compound planetary gear set with damaged sun gear[J]. Journal of Mechanical Science and Technology, 2018, 32: 3081- 3096
doi: 10.1007/s12206-018-0611-0
8 LYU X, HU Z, ZHOU H, et al Application of improved MCKD method based on QGA in planetary gear compound fault diagnosis[J]. Measurement, 2019, 139: 236- 248
doi: 10.1016/j.measurement.2019.02.071
9 陈仁祥, 唐林林, 孙健, 等. 一维深度子领域适配的不同转速下旋转机械复合故障诊断[J]. 仪器仪表学报, 2021, 42(5): 227-234.
CHEN Ren-xiang, TANG Lin-lin, SUN Jian, et al. Composite fault diagnosis of rotating machinery under different speed based on one dimensional deep subdomain adaption [J]. Chinese Journal of Scientific Instrument. 2021, 42(5): 227-234.
10 HUANG R, LI W, CUI L. An intelligent compound fault diagnosis method using one-dimensional deep convolutional neural network with multi-label classifier [C]// 2019 IEEE International Instrumentation and Measurement Technology Conference (i2mtc). New York: IEEE. 2019: 97-102.
11 HUANG R, LI J, LI W, et al Deep ensemble capsule network for intelligent compound fault diagnosis using multisensory data[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (5): 2304- 2314
doi: 10.1109/TIM.2019.2958010
12 JIN Y, QIN C, HUANG Y, et al Actual bearing compound fault diagnosis based on active learning and decoupling attentional residual network[J]. Measurement, 2021, 173: 108500
doi: 10.1016/j.measurement.2020.108500
13 LIANG P, DENG C, WU J, et al Compound fault diagnosis of gearboxes via multi-label convolutional neural network and wavelet transform[J]. Computers in Industry, 2019, 113: 103132
doi: 10.1016/j.compind.2019.103132
14 ZHANG J, ZHANG Q, HE X, et al Compound fault diagnosis of rotating machinery: a fused imbalance learning method[J]. IEEE Transactions on Control Systems Technology, 2021, 29 (4): 1462- 1474
doi: 10.1109/TCST.2020.3015514
15 齐咏生, 刘飞, 李永亭, 等 基于MK-MOMEDA和Teager能量算子的风电机组滚动轴承复合故障诊断[J]. 太阳能学报, 2021, 42 (7): 297- 307
QI Yong-sheng, LIU Fei, LI Yong-ting, et al Compound fault diagnosis of wind turbine rolling bearing based on MK-MOMEDA and teager energy operator[J]. Journal of Solar Energy, 2021, 42 (7): 297- 307
doi: 10.19912/j.0254-0096.tynxb.2019-0276
16 杜丽君, 丁康, 蒋飞 基于变速工况稀疏调频字典的齿轮复合故障诊断[J]. 重庆理工大学学报: 自然科学版, 2021, 35 (9): 92- 102
DU Li-jun, DING Kang, JIANG Fei Gear compound faults diagnosis based on sparse frequency modulation dictionary under variable speed[J]. Journal of Chongqing University of Technology: Natual Science, 2021, 35 (9): 92- 102
17 DIBAJ A, ETTEFAGH M M, HASSANNEJAD R, et al A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults[J]. Expert Systems with Applications, 2021, 167: 114094
doi: 10.1016/j.eswa.2020.114094
18 LIU S, ZHANG L, YANG X, et al. Query2Label: a simple transformer way to multi-label classification [EB/OL]. [2022-07-01]. https://doi.org//0.48550/arXiv.2017.10834.
19 卢昱奇. 基于卷积神经网络的行星齿轮箱复合故障诊断方法研究[D]. 电子科技大学, 2020: 1-20.
LU Yu-qi. Research on Compound Fault Diagnosis Method of Planetary Gearbox Based on Convolutional Neural Network [D]. University of Electronic Science and Technology of China, 2020: 1-20.
20 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Advances in Neural Information Processing Systems 30 (nips 2017). La Jolla: NIPS, 2017: 6000-6010.
21 HAN K, WANG Y, CHEN H, et al A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (1): 87- 110
22 CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers [C]// Computer Vision – ECCV 2020. Cham: SIP, 2020: 213-229.
[1] 陆昱翔,徐冠华,唐波. 基于视觉Transformer时空自注意力的工人行为识别[J]. 浙江大学学报(工学版), 2023, 57(3): 446-454.
[2] 王万良,王铁军,陈嘉诚,尤文波. 融合多尺度和多头注意力的医疗图像分割方法[J]. 浙江大学学报(工学版), 2022, 56(9): 1796-1805.
[3] 贺俊,张雅声,尹灿斌. 基于深度学习的星载SAR工作模式鉴别[J]. 浙江大学学报(工学版), 2022, 56(8): 1676-1684.
[4] 莫仁鹏,司小胜,李天梅,朱旭. 基于多尺度特征与注意力机制的轴承寿命预测[J]. 浙江大学学报(工学版), 2022, 56(7): 1447-1456.
[5] 温竹鹏,陈捷,刘连华,焦玲玲. 基于小波变换和优化CNN的风电齿轮箱故障诊断[J]. 浙江大学学报(工学版), 2022, 56(6): 1212-1219.
[6] 何立,庞善民. 结合年龄监督和人脸先验的语音-人脸图像重建[J]. 浙江大学学报(工学版), 2022, 56(5): 1006-1016.
[7] 王云灏,孙铭会,辛毅,张博宣. 基于压电薄膜传感器的机器人触觉识别系统[J]. 浙江大学学报(工学版), 2022, 56(4): 702-710.
[8] 温佩芝,陈君谋,肖雁南,温雅媛,黄文明. 基于生成式对抗网络和多级小波包卷积网络的水下图像增强算法[J]. 浙江大学学报(工学版), 2022, 56(2): 213-224.
[9] 袁天乐,袁巨龙,朱勇建,郑翰辰. 基于改进YOLOv5的推力球轴承表面缺陷检测算法[J]. 浙江大学学报(工学版), 2022, 56(12): 2349-2357.
[10] 付晓峰,牛力. 基于深度卷积和自编码器增强的微表情判别[J]. 浙江大学学报(工学版), 2022, 56(10): 1948-1957.
[11] 任松,朱倩雯,涂歆玥,邓超,王小书. 基于深度学习的公路隧道衬砌病害识别方法[J]. 浙江大学学报(工学版), 2022, 56(1): 92-99.
[12] 郑英杰,吴松荣,韦若禹,涂振威,廖进,刘东. 基于目标图像FCM算法的地铁定位点匹配及误报排除方法[J]. 浙江大学学报(工学版), 2021, 55(3): 586-593.
[13] 刘近贞,叶方方,熊慧. 基于卷积神经网络的多类运动想象脑电信号识别[J]. 浙江大学学报(工学版), 2021, 55(11): 2054-2066.
[14] 陈巧红,陈翊,李文书,贾宇波. 多尺度SE-Xception服装图像分类[J]. 浙江大学学报(工学版), 2020, 54(9): 1727-1735.
[15] 周登文,田金月,马路遥,孙秀秀. 基于多级特征并联的轻量级图像语义分割[J]. 浙江大学学报(工学版), 2020, 54(8): 1516-1524.