Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (10): 1948-1957    DOI: 10.3785/j.issn.1008-973X.2022.10.006
自动化技术、信息工程     
基于深度卷积和自编码器增强的微表情判别
付晓峰(),牛力
杭州电子科技大学 计算机学院,浙江 杭州 310018
Micro-expression classification based on deep convolution and auto-encoder enhancement
Xiao-feng FU(),Li NIU
School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
 全文: PDF(2816 KB)   HTML
摘要:

为了判别微表情种类,提出基于深度卷积神经网络和迁移学习的微表情种类判别网络MecNet. 为了提高MecNet在CASME II、SMIC和SAMM联合数据库上的微表情种类判别准确率,提出基于自编码器的微表情生成网络MegNet,以扩充训练集. 使用CASME II亚洲人的微表情样本,生成欧美人的微表情样本. 设计卷积结构实现图像编码,设计基于子像素卷积的特征图上采样模块实现图像解码,设计基于图像结构相似性的损失函数用于网络优化. 将生成的欧美人的微表情样本加入MecNet训练集. 实验结果表明,使用MegNet扩充训练集能够有效地提高MecNet微表情种类判别准确率. 结合MegNet、MecNet的算法在CASME II、SMIC和SAMM组成的联合数据库上的表现优于大部分现有算法.

关键词: 微表情种类判别深度卷积神经网络迁移学习自编码器    
Abstract:

A micro-expression classification network named MecNet was proposed based on the deep convolutional neural network and transfer learning in order to classify the types of micro-expressions. MegNet was proposed to expand the training set in order to improve the accuracy of micro-expressions classification of MecNet on the joint database of CASME II, SMIC and SAMM. MegNet is a micro-expression sample generation network based on the auto-encoder. Asian micro-expression samples of CASME II were used to generate western micro-expression samples. A convolution structure was designed to encode images, and a feature map upsampling module was designed based on the sub-pixel convolution to decode images. A loss function based on the structural similarity of images was designed to optimize the network. The generated western micro-expression samples were added to the training set of MecNet. The experimental results show that the accuracy of micro-expression classification of MecNet can?be?effectively?improved?by?using?MegNet?to?expand?training?sets. The algorithm combining MegNet and MecNet performs better than the most existing algorithms on the joint database composed of CASME II, SMIC and SAMM.

Key words: micro-expression classification    deep convolutional neural network    transfer learning    auto-encoder
收稿日期: 2021-10-06 出版日期: 2022-10-25
CLC:  TP 301  
基金资助: 国家自然科学基金资助项目(61672199)
作者简介: 付晓峰(1981—),女,副教授,博士,从事计算机视觉、模式识别、人工智能等研究. orcid.org/0000-0003-4903-5266.E-mail: fuxiaofeng@hdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
付晓峰
牛力

引用本文:

付晓峰,牛力. 基于深度卷积和自编码器增强的微表情判别[J]. 浙江大学学报(工学版), 2022, 56(10): 1948-1957.

Xiao-feng FU,Li NIU. Micro-expression classification based on deep convolution and auto-encoder enhancement. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1948-1957.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.10.006        https://www.zjujournals.com/eng/CN/Y2022/V56/I10/1948

图 1  传统自编码器的结构图
图 2  微表情生成网络的流程图
图 3  MegNet编码器的结构图
图 4  MegNet解码器的结构图
编码器 解码器
网络层 特征图尺寸 网络层 特征图尺寸
输入层 128×128×3 输入层 16×16×512
5×5×128 Conv 64×64×128 3×3×2 048 Conv 16×16×2 048
5×5×256 Conv 32×32×256 PixelShuffle 32×32×512
5×5×512 Conv 16×16×512 3×3×1 024 Conv 32×32×1 024
5×5×1 024 Conv 8×8×1 024 PixelShuffle 64×64×256
Flatten 65536 3×3×512 Conv 64×64×512
512 FC 512 PixelShuffle 128×128×128
8×8×512 FC 32 768 5×5×3 Conv 128×128×3
变形8×8×512 8×8×512 输出层 128×128×3
3×3×2 048 Conv 8×8×2 048
PixelShuffle 16×16×512
输出层 16×16×512
表 1  MegNet编码器和解码器各层运算之后的特征图尺寸
图 5  子像素卷积神经网络的结构
图 6  MegNet特征图上采样模块的结构
图 7  图像结构相似度测量系统图
图 8  微表情种类判别网络的结构图
图 9  微表情样本生成实验所用的人脸展示
编号 数量 编号 数量
A1 2 220 B1 2 956
A2 1 226 B2 5 323
A3 1 154 B3 7 148
A4 1 141 B4 7 360
A5 1 096 B5 4 191
A6 990 B6 7 611
A7 956 B7 5 501
A8 884 B8 5 312
B9 4 911
B10 10 801
表 2  集合A和B的个体样本数量
编号 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
A1 A1B1 A1B6 A1B7 A1B8 A1B10
A2 A2B2 A2B3 A2B5 A2B7 A2B9
A3 A3B2 A3B3 A3B4 A3B5 A3B9
A4 A4B1 A4B7 A4B8 A4B9 A4B10
A5 A5B1 A5B6 A5B8 A5B9 A5B10
A6 A6B1 A6B3 A6B4 A6B6 A6B8
A7 A7B3 A7B6 A7B7 A7B8 A7B10
A8 A8B2 A8B4 A8B5 A8B6 A8B10
表 3  集合A和B的实验组合
图 10  A1B1实验组训练过程的预览图
图 11  训练预览图详解
图 12  MegNet生成的微表情样本示例
情感类别 SMIC CASME II SAMM 联合数据库
Negative 70 88 92 250
Positive 51 32 26 109
Surprise 43 25 15 83
合计 164 145 133 442
表 4  联合数据库的样本分布
方法 联合数据库 SMIC CASME II SAMM
UF1 UAR UF1 UAR UF1 UAR UF1 UAR
LBP-TOP[18] 0.588 2 0.578 5 0.200 0 0.528 0 0.702 6 0.742 9 0.395 4 0.410 2
Bi-WOOF[19] 0.629 6 0.622 7 0.572 7 0.582 9 0.780 5 0.802 6 0.521 1 0.513 9
OFF-ApexNet[8] 0.719 6 0.709 6 0.681 7 0.669 5 0.876 4 0.868 1 0.540 9 0.539 2
CapsuleNet[20] 0.652 0 0.650 6 0.582 0 0.587 7 0.706 8 0.701 8 0.620 9 0.598 9
Dual-Inception[9] 0.732 2 0.727 8 0.664 5 0.672 6 0.862 1 0.856 0 0.586 8 0.566 3
STSTNet[21] 0.735 3 0.760 5 0.680 1 0.701 3 0.838 2 0.868 6 0.658 8 0.681 0
EMR[22] 0.788 5 0.782 4 0.746 1 0.753 0 0.829 3 0.820 9 0.775 4 0.715 2
LGCcon[5] 0.792 9 0.763 9 0.524 8 0.495 5
LGCconD[5] 0.619 5 0.606 6 0.776 2 0.749 9 0.492 4 0.471 1
MecNet 0.763 2 0.770 4 0.720 1 0.731 9 0.866 7 0.851 0 0.735 8 0.677 2
MegNet+MecNet 0.789 3 0.805 6 0.742 5 0.751 3 0.867 4 0.852 1 0.768 2 0.709 3
表 5  本文方法与现有方法的性能对比
1 付晓峰, 牛力, 胡卓群, 等 基于过渡帧概念训练的微表情检测深度网络[J]. 浙江大学学报: 工学版, 2020, 54 (11): 2128- 2137
FU Xiao-feng, NIU Li, HU Zhuo-qun, et al Deep micro-expression spotting network training based on concept of transition frame[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (11): 2128- 2137
2 BEN X, REN Y, ZHANG J, et al Video-based facial micro-expression analysis: a survey of datasets, features and algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (9): 5826- 5846
3 WEI J, LU G, YAN J A comparative study on movement feature in different directions for micro-expression recognition[J]. Neurocomputing, 2021, 449: 159- 171
doi: 10.1016/j.neucom.2021.03.063
4 ZHAO S, TAO H, ZHANG Y, et al A two-stage 3D CNN based learning method for spontaneous micro-expression recognition[J]. Neurocomputing, 2021, 448: 276- 289
doi: 10.1016/j.neucom.2021.03.058
5 LI Y, HUANG X, ZHAO G Joint local and global information learning with single apex frame detection for micro-expression recognition[J]. IEEE Transactions on Image Processing, 2021, 30: 249- 263
doi: 10.1109/TIP.2020.3035042
6 AOUAYEB M, HAMIDOUCHE W, SOLADIE C, et al Micro-expression recognition from local facial regions[J]. Signal Processing: Image Communication, 2021, 99 (116457): 1- 9
7 LIU K, JIN Q, XU H, et al Micro-expression recognition using advanced genetic algorithm[J]. Signal Processing: Image Communication, 2021, 93 (116153): 1- 10
8 GAN Y S, LIONG S T, YAU W C, et al OFF-ApexNet on micro-expression recognition system[J]. Signal Processing: Image Communication, 2019, 74: 129- 139
doi: 10.1016/j.image.2019.02.005
9 ZHOU L, MAO Q, XUE L. Dual-Inception network for cross-database micro-expression recognition [C]// 14th IEEE International Conference on Automatic Face and Gesture Recognition. Lille: IEEE, 2019: 1-5.
10 YAN W J, LI X, WANG S J, et al CASME II: an improved spontaneous micro-expression database and the baseline evaluation[J]. PLOS ONE, 2014, 9 (1): 1- 8
11 LI X, PFISTER T, HUANG X, et al. A spontaneous micro-expression database: inducement, collection and baseline [C]// 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Shanghai: IEEE, 2013: 1–6.
12 DAVISON A K, LANSLEY C, COSTEN N, et al SAMM: a spontaneous micro-facial movement dataset[J]. IEEE Transactions on Affective Computing, 2018, 9 (1): 116- 129
doi: 10.1109/TAFFC.2016.2573832
13 HUANG S W, LIN C T, CHEN S P, et al. AugGAN: cross domain adaptation with GAN-based data augmentation [C]// European Conference on Computer Vision. Munich: Springer, 2018: 731-744.
14 SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883.
15 SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs [C]// 30th Conference on Neural Information Processing Systems. Barcelona: [s. n.], 2016: 1-9.
16 WANG Z, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 1- 14
doi: 10.1109/TIP.2004.827769
17 SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning [C]// 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 4-12.
18 ZHAO G, PIETIKAINEN M Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (6): 915- 928
doi: 10.1109/TPAMI.2007.1110
19 LIONG S T, SEE J, WONG K, et al Less is more: micro-expression recognition from video using apex frame[J]. Signal Processing: Image Communication, 2018, 62: 82- 92
doi: 10.1016/j.image.2017.11.006
20 QUANG N V, CHUN J, TOKUYAMA T. CapsuleNet for micro-expression recognition [C]// 14th IEEE International Conference on Automatic Face and Gesture Recognition. Lille: IEEE, 2019: 1-7.
21 LIONG S T, GAN Y, SEE J, et al. Shallow triple stream three-dimensional CNN (STSTNet) for micro-expression recognition [C]// 14th IEEE International Conference on Automatic Face and Gesture Recognition. Lille: IEEE, 2019: 1-5.
[1] 潘裕斌,王华,陈捷,洪荣晶. 基于核极限学习机自编码器的转盘轴承寿命状态识别[J]. 浙江大学学报(工学版), 2022, 56(9): 1856-1866.
[2] 华夏,王新晴,芮挺,邵发明,王东. 视觉感知的无人机端到端目标跟踪控制技术[J]. 浙江大学学报(工学版), 2022, 56(7): 1464-1472.
[3] 高一聪,王彦坤,费少梅,林琼. 基于迁移学习的机械制图智能评阅方法[J]. 浙江大学学报(工学版), 2022, 56(5): 856-863, 889.
[4] 白文超,韩希先,王金宝. 基于条件生成模型的高效近似查询处理框架[J]. 浙江大学学报(工学版), 2022, 56(5): 995-1005.
[5] 刘兴,余建波. 注意力卷积GRU自编码器及其在工业过程监控的应用[J]. 浙江大学学报(工学版), 2021, 55(9): 1643-1651.
[6] 陈智超,焦海宁,杨杰,曾华福. 基于改进MobileNet v2的垃圾图像分类算法[J]. 浙江大学学报(工学版), 2021, 55(8): 1490-1499.
[7] 郑英杰,吴松荣,韦若禹,涂振威,廖进,刘东. 基于目标图像FCM算法的地铁定位点匹配及误报排除方法[J]. 浙江大学学报(工学版), 2021, 55(3): 586-593.
[8] 许昱晖,舒俊清,宋亚,郑宇,夏唐斌. 基于多时间尺度相似性的涡扇发动机寿命预测[J]. 浙江大学学报(工学版), 2021, 55(10): 1937-1947.
[9] 康庄,杨杰,郭濠奇. 基于机器视觉的垃圾自动分类系统设计[J]. 浙江大学学报(工学版), 2020, 54(7): 1272-1280.
[10] 沈宗礼,余建波. 基于迁移学习与深度森林的晶圆图缺陷识别[J]. 浙江大学学报(工学版), 2020, 54(6): 1228-1239.
[11] 江金生,任浩然,李瀚野. 基于卷积自编码器的地震数据处理[J]. 浙江大学学报(工学版), 2020, 54(5): 978-984.
[12] 付晓峰,牛力,胡卓群,李建军,吴卿. 基于过渡帧概念训练的微表情检测深度网络[J]. 浙江大学学报(工学版), 2020, 54(11): 2128-2137.
[13] 王万良,杨小涵,赵燕伟,高楠,吕闯,张兆娟. 采用卷积自编码器网络的图像增强算法[J]. 浙江大学学报(工学版), 2019, 53(9): 1728-1740.