机械与能源工程 |
|
|
|
|
基于多时间尺度相似性的涡扇发动机寿命预测 |
许昱晖( ),舒俊清,宋亚,郑宇,夏唐斌*( ) |
上海交通大学 机械系统与振动国家重点实验室,上海 200240 |
|
Remaining useful life prediction of turbofan engine based on similarity in multiple time scales |
Yu-hui XU( ),Jun-qing SHU,Ya SONG,Yu ZHENG,Tang-bin XIA*( ) |
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
许昱晖,舒俊清,宋亚,郑宇,夏唐斌. 基于多时间尺度相似性的涡扇发动机寿命预测[J]. 浙江大学学报(工学版), 2021, 55(10): 1937-1947.
Yu-hui XU,Jun-qing SHU,Ya SONG,Yu ZHENG,Tang-bin XIA. Remaining useful life prediction of turbofan engine based on similarity in multiple time scales. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1937-1947.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.016
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1937
|
1 |
TAHAN M, TSOUTSANIS E, MUHAMMAD M, et al Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review[J]. Applied Energy, 2017, 198: 122- 144
doi: 10.1016/j.apenergy.2017.04.048
|
2 |
XIA T, DONG Y, XIAO L, et al Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering and System Safety, 2018, 178: 255- 268
doi: 10.1016/j.ress.2018.06.021
|
3 |
LIU Y, HU X, ZHANG W Remaining useful life prediction based on health index similarity[J]. Reliability Engineering and System Safety, 2019, 185: 502- 510
doi: 10.1016/j.ress.2019.02.002
|
4 |
JAVED K, GOURIVEAU R, ZERHOUNI N State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels[J]. Mechanical Systems and Signal Processing, 2016, 94: 214- 236
|
5 |
WANG H, MA X, ZHAO Y An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction[J]. Mechanical Systems and Signal Processing, 2019, 127: 370- 387
doi: 10.1016/j.ymssp.2019.03.019
|
6 |
王浩伟, 徐廷学, 刘勇 基于随机参数Gamma过程的剩余寿命预测方法[J]. 浙江大学学报:工学版, 2015, 49 (4): 699- 704 WANG Hao-wei, XU Ting-xue, LIU Yong Remaining useful life prediction method based on Gamma processes with random parameters[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (4): 699- 704
|
7 |
ZHANG H, MIAO Q, ZHANG X, et al An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction[J]. Microelectronics Reliability, 2018, 81: 288- 298
doi: 10.1016/j.microrel.2017.12.036
|
8 |
CHEN Z, LI Y, XIA T, et al Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy[J]. Reliability Engineering and System Safety, 2019, 184: 123- 136
doi: 10.1016/j.ress.2017.09.002
|
9 |
BABU G S, ZHAO P, LI X. Deep convolutional neural network based regression approach for estimation of remaining useful life [C]// Proceedings of the International Conference on Database Systems for Advanced Applications. Berlin: Springer, 2016: 214-228.
|
10 |
ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation [C]// Proceedings of the International Conference on Prognostics and Health Management. Washington, D. C.: IEEE, 2017: 88-95.
|
11 |
WANG T, YU J, SIEGEL D, et al. A similarity-based prognostics approach for remaining useful life estimation of engineered systems [C]// International Conference on Prognostics and Health Management. Washington, D. C.: IEEE, 2008: 1-6.
|
12 |
ZIO E, DI MAIO F A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system[J]. Reliability Engineering and System Safety, 2010, 95 (1): 49- 57
doi: 10.1016/j.ress.2009.08.001
|
13 |
YOU M Y, MENG G A generalized similarity measure for similarity-based residual life prediction[J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 2011, 225 (3): 151- 160
doi: 10.1177/0954408911399832
|
14 |
谷梦瑶, 陈友玲, 王新龙 多退化变量下基于实时健康度的相似性寿命预测方法[J]. 计算机集成制造系统, 2017, 23 (2): 362- 372 GU Meng-yao, CHEN You-ling, WANG Xin-long Multi-index modeling for similarity-based residual life estimation based on real-time health degree[J]. Computer Integrated Manufacturing Systems, 2017, 23 (2): 362- 372
|
15 |
CAI H, JIA X, FENG J, et al A similarity based methodology for machine prognostics by using kernel two sample test[J]. ISA Transactions, 2020, 103: 112- 121
doi: 10.1016/j.isatra.2020.03.007
|
16 |
AZEVEDO D, RIBEIRO B, CARDOSO A. Online simulation of methods to predict the remaining useful lifetime of aircraft components [C]// Proceedings of Experiment International Conference. Washington, D. C.: IEEE, 2019: 199-203.
|
17 |
CHARTE D, CHARTE F, GARCÍA S, et al A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines[J]. Information Fusion, 2018, 44: 78- 96
doi: 10.1016/j.inffus.2017.12.007
|
18 |
REN L, SUN Y, CUI J, et al Bearing remaining useful life prediction based on deep autoencoder and deep neural networks[J]. Journal of Manufacturing Systems, 2018, 48 (Part C): 71- 77
|
19 |
MA J, SU H, ZHAO W, et al Predicting the remaining useful life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning[J]. Complexity, 2018, 2018: 1- 13
|
20 |
CHEN C, LEU J, PRAKOSA S W. Using autoencoder to facilitate information retention for data dimension reduction [C]// 3rd International Conference on Intelligent Green Building and Smart Grid. Washington, D. C.: IEEE, 2018: 1-5.
|
21 |
XIA T, SONG Y, ZHENG Y, et al An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Computers in Industry, 2020, 115: 103182
doi: 10.1016/j.compind.2019.103182
|
22 |
SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation [C]// International Conference on Prognostics and Health Management. Washington, D. C.: IEEE, 2008: 1-9.
|
23 |
HEIMES F O. Recurrent neural networks for remaining useful life estimation [C]// International Conference on Prognostics and Health Management. Washington, D. C.: IEEE, 2008: 1-6.
|
24 |
LOUEN C, DING S X, KANDLER C. A new framework for remaining useful life estimation using support vector machine classifier [C]// Proceedings of Conference on Control and Fault-Tolerant Systems. Washington, D. C.: IEEE, 2013: 228-233.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|