Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (10): 1930-1936    DOI: 10.3785/j.issn.1008-973X.2021.10.015
土木工程、交通工程     
双桨无人船转弯半径预报
王雄东1(),彭章明1,潘华辰1,田晓庆1,2,*(),朱泽飞1,冷建兴2
1. 杭州电子科技大学 机械工程学院,浙江 杭州 310018
2. 浙江大学 海洋学院,浙江 舟山 316021
Prediction of turning radius of autonomous ship with two propellers
Xiong-dong WANG1(),Zhang-ming PENG1,Hua-chen PAN1,Xiao-qing TIAN1,2,*(),Ze-fei ZHU1,Jian-xing LENG2
1. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
2. Ocean College, Zhejiang University, Zhoushan 316021, China
 全文: PDF(1362 KB)   HTML
摘要:

采用安装有2个螺旋桨的模型遥控船为研究对象,采用滑移网格技术建立实尺度三维混合网格,运用SST模型进行计算流体力学(CFD)仿真. 对该船在静止坐标系下进行自航模拟,通过阻力/推力平衡和单个螺旋桨的偏心位置计算单螺旋桨推进下船的转弯力矩. 建立包含船、桨在内的大区域旋转网格,对该船2种工况下的转弯特性进行数值模拟. 通过插值,可得转弯半径. 对左侧螺旋桨转速为7 560 r/min的实船模型进行转弯实验,测出实船的转弯半径. 数值模拟值与实验测量值之间的相对误差为5.56%,验证了该方法的通用性,为后续双桨水面无人船的精确控制提供数据支持.

关键词: 无人船差速转弯半径混合网格计算流体力学(CFD)    
Abstract:

A model remote-controlled ship equipped with two propellers was used as the research object. A real-scale three-dimensional hybrid grid was established by using the sliding grid technology. The SST model was used for computational fluid dynamics (CFD) calculations. The self-propulsion simulation of the ship was conducted in the stationary coordinate system. The turning moment of the ship caused by single-propeller propulsion was calculated through the resistance/thrust balance and the eccentric position of the single propeller. A large-area rotating grid including the ship and the propeller was established. The turning characteristics of the ship under two working conditions were numerically simulated. The turning radius can be obtained by using interpolation. A turning experiment was performed on a real ship model with the left propeller speed of 7 560 r/min. The turning radius of the real ship was measured. The relative error between the numerical simulation value and the experimental measurement value was 5.56%. The versatility of the method was verified, and data support was provided for the subsequent precise control of the dual-propeller autonomous surface ship.

Key words: autonomous ship    differential speed    turning radius    hybrid grid    computational fluid dynamics (CFD)
收稿日期: 2020-11-19 出版日期: 2021-10-27
CLC:  U 661  
基金资助: 国家自然科学基金资助项目(51709070);浙江省重点研发计划资助项目(2018C04002,2021C03013);浙江省属高校基本科研业务费专项资金资助项目(GK199900299012-026)
通讯作者: 田晓庆     E-mail: wangxiongdong@hdu.edu.cn;tianxiaoqing@hdu.edu.cn
作者简介: 王雄东(1994—),男,硕士生,从事计算流体力学的研究. orcid.org/0000-0001-9547-621X. E-mail: wangxiongdong@hdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王雄东
彭章明
潘华辰
田晓庆
朱泽飞
冷建兴

引用本文:

王雄东,彭章明,潘华辰,田晓庆,朱泽飞,冷建兴. 双桨无人船转弯半径预报[J]. 浙江大学学报(工学版), 2021, 55(10): 1930-1936.

Xiong-dong WANG,Zhang-ming PENG,Hua-chen PAN,Xiao-qing TIAN,Ze-fei ZHU,Jian-xing LENG. Prediction of turning radius of autonomous ship with two propellers. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1930-1936.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.015        https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1930

图 1  遥控船
图 2  40F型螺旋桨
图 3  船体三维网格
图 4  螺旋桨三维网格
图 5  船体周围的三维网格
图 6  船体的自航计算域
图 7  力矩、螺旋桨推力和船舶阻力随步长的波动
图 8  当转速为6 500~10 000 r/min时自航点的确定
图 9  螺旋桨转速为7 560 r/min时右侧螺旋桨附近的自由液面分布图
图 10  螺旋桨转速为7 560 r/min时船行驶后形成的波高图
图 11  旋转域
图 12  整个计算域
图 13  角速度的判定
图 14  当船以−10.96 r/min速度转弯时的速度矢量图
图 15  当船以−10.96 r/min速度转弯时的流线图
图 16  无人船转弯半径测试的实验平台设计图
图 17  部分实验拍摄图
图 18  无人船重心位置的确定
1 陈真义. 小型水面无人船航行状态感知系统研究[D]. 武汉: 武汉理工大学, 2014.
CHEN Zhen-yi. Research on small unmanned surface vehicle sailing state obtaining system [D]. Wuhan: Wuhan University of Technology, 2014.
2 张树凯, 刘正江, 张显库, 等 无人船艇的发展及展望[J]. 世界海运, 2015, 38 (9): 29- 36
ZHANG Shu-kai, LIU Zheng-jiang, ZHANG Xian-ku, et al The development and prospect of unmanned craft[J]. Shipping Industry of the World, 2015, 38 (9): 29- 36
3 CHEN P F, HUANG Y M, PAPADIMITRIOU E, et al Global path planning for autonomous ship: a hybrid approach of fast marching square and velocity obstacles methods[J]. Ocean Engineering, 2020, 214: 107793
doi: 10.1016/j.oceaneng.2020.107793
4 赵英序, 朱景伟, 边涛, 等 基于PMSM的双螺旋桨USV推进系统建模与仿真[J]. 大连海事大学学报:自然科学版, 2018, 44 (1): 17- 24
ZHAO Ying-xu, ZHU Jing-wei, BIAN Tao, et al Modeling and simulation of twin-propeller unmanned surface vehicle propulsion system based on PMSM[J]. Journal of Dalian Maritime University: Natural Science Edition, 2018, 44 (1): 17- 24
5 叶金铭, 熊鹰, 孙海涛, 等 空泡螺旋桨诱导的双桨船脉动压力数值预报[J]. 哈尔滨工程大学学报, 2013, 34: 568- 574
YE Jin-ming, XIONG Ying, SUN Hai-tao, et al Numerical prediction of pressure fluctuations induced by cavitating propeller on twin-screw ship[J]. Journal of Harbin Engineering University, 2013, 34: 568- 574
6 郭海鹏. 基于CFD的双桨双舵船四自由度MMG模型建模及操纵性预报研究[D]. 上海: 上海交通大学, 2019.
GUO Hai-peng. Research on the CFD-based modeling of 4-DoF MMG model and maneuverability prediction for a twin-propeller twin-rudder ship [D]. Shanghai: Shanghai Jiao Tong University, 2019.
7 庄丽帆, 刘源, 凌杰, 等 基于船-桨-舵组合系统舵球节能效果数值预报[J]. 中国水运, 2018, 18 (9): 79- 81
ZHUANG Li-fan, LIU Yuan, LING Jie, et al Numerical prediction of rubber energy saving effects based on boat-propeller-rudder system[J]. China Water Transport, 2018, 18 (9): 79- 81
8 齐慧博, 刘业宝, 张克正, 等 基于CFD方法的桨舵干扰非定常水动力性能研究[J]. 中国科技论文, 2017, 12 (7): 725- 728
QI Hui-bo, LIU Ye-bao, ZHANG Ke-zheng, et al Unsteady hydrodynamic performance of propeller and rudder system studied by CFD[J]. China Sciencepaper, 2017, 12 (7): 725- 728
doi: 10.3969/j.issn.2095-2783.2017.07.001
9 SAKAMOTO N, KUME K, KAWANAMI Y, et al Evaluation of hydrodynamic performance of pre-swirl and post-swirl ESDs for merchant ships by numerical towing tank procedure[J]. Ocean Engineering, 2019, 178: 104- 133
doi: 10.1016/j.oceaneng.2019.02.067
10 祝启波. 基于船-桨-舵全耦合求解的船舶自航性能数值预报方法研究[D]. 镇江: 江苏科技大学, 2016.
ZHU Qi-bo. Numerical prediction method research of ship self-propulsion performance based on hull-propeller-rudder system [D]. Zhenjiang: Jiangsu University of Science and Technology, 2016.
11 陈志明, 袁剑平, 严谨, 等 基于MRF方法和滑移网格的螺旋桨水动力性能研究[J]. 船舶工程, 2020, 42 (Supple.1): 157- 162
CHEN Zhi-ming, YUAN Jian-ping, YAN Jin, et al Study on hydrodynamic performance of propeller based on MRF model and sliding mesh[J]. Ship Engineering, 2020, 42 (Supple.1): 157- 162
12 林焰, 何靖仪 基于RANS法的船舶动力及自由运动预报[J]. 船舶工程, 2019, 41: 52- 57
LIN Yan, HE Jing-yi Prediction of ship resistance and free motion based on RANS method[J]. Ship Engineering, 2019, 41: 52- 57
13 陈如星, 周瑞平, 林晞晨 基于CFX的螺旋桨激振力数值预报研究[J]. 武汉理工大学学报, 2014, 36 (7): 73- 79
CHEN Ru-xing, ZHOU Rui-ping, LIN Xi-chen Numerical simulation of the propeller-induced force based on CFX[J]. Journal of Wuhan University of Technology, 2014, 36 (7): 73- 79
14 周晓明. 螺旋桨功率与推力数据库的建立[D]. 杭州: 杭州电子科技大学, 2020.
ZHOU Xiao-ming. Establishment of propeller power and thrust database [D]. Hangzhou: Hangzhou Dianzi University, 2020.
15 郭春雨, 张东汗, 王恋舟, 等 近自由液面螺旋桨吸气数值模拟[J]. 华中科技大学学报: 自然科学版, 2019, 47 (2): 81- 86
GUO Chun-yu, ZHANG Dong-han, WANG Lian-zhou, et al Numerical simulation of propeller ventilation near the free surface[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2019, 47 (2): 81- 86
16 于苏楠. 带球鼻艏船舶阻力计算及与实测数据的对比[D]. 杭州: 杭州电子科技大学, 2018.
YU Su-nan. Calculation for resistance of a ship with bulbous bow and comparison with experimental data [D]. Hangzhou: Hangzhou Dianzi University, 2018.
[1] 高用祥,洪都,成有为,王丽军,李希. 连续三相喷射环流反应器的实验和数值模拟[J]. 浙江大学学报(工学版), 2019, 53(5): 997-1005.
[2] 王悦荟,刘聪,王鹏飞,许忠斌,阮晓东,付新. 蒸汽发生器致畸变入流对核主泵流动性能的影响[J]. 浙江大学学报(工学版), 2019, 53(11): 2076-2084.
[3] 陆燕宁,章洪涛,许岩韦,朱燕群,万凯迪,邵哲如,王智化. 烟气再循环对生物质炉排炉燃烧影响的数值模拟[J]. 浙江大学学报(工学版), 2019, 53(10): 1898-1906.
[4] 陈伟, 秦仙蓉, 杨志刚. 塔式起重机塔身和起重臂的风载荷特征分析[J]. 浙江大学学报(工学版), 2018, 52(12): 2262-2270.
[5] 马浩军,朱绍鹏,俞小莉,许印川,林鼎. 考虑侧倾运动的电动汽车电子差速控制[J]. 浙江大学学报(工学版), 2016, 50(3): 566-573.
[6] 张雷, 潘存云, 徐海军, 张湘. 旋转活塞式气动发动机气口设计[J]. 浙江大学学报(工学版), 2014, 48(12): 2181-2187.
[7] 马丽莎, 周文晖, 龚小谨, 刘济林. 基于运动约束的泛化Field D*路径规划[J]. J4, 2012, 46(8): 1546-1552.
[8] 孙婧元, 楼佳明, 黄正梁, 王靖岱, 蒋斌波, 阳永荣. 液体雾化效果的检测及流体力学模拟[J]. J4, 2012, 46(2): 218-225.
[9] 李强, 刘淑莲, 于桂昌, 潘晓弘, 郑水英. 非线性转子-轴承耦合系统润滑及稳定性分析[J]. J4, 2012, 46(10): 1729-1736.
[10] 周胤,俞亚南,段园煜. 金属压型板屋顶通风层隔热的数值模拟[J]. J4, 2011, 45(1): 112-117.
[11] 葛英辉 倪光正. 新型电动车电子差速控制策略研究[J]. J4, 2005, 39(12): 1973-1978.