Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (12): 2262-2270    DOI: 10.3785/j.issn.1008-973X.2018.12.003
机械工程     
塔式起重机塔身和起重臂的风载荷特征分析
陈伟1, 秦仙蓉1, 杨志刚1,2
1. 同济大学 机械与能源工程学院, 上海 201804;
2. 同济大学 上海地面交通工具风洞中心, 上海 201804
Wind load characteristics analysis of mast and jib of tower crane
CHEN Wei1, QIN Xian-rong1, YANG Zhi-gang1,2
1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China;
2. Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China
 全文: PDF(1189 KB)   HTML
摘要:

定义风载荷系数表达式,完成塔机在均匀风场和B类风场下12个风向角的计算流体力学(CFD)数值计算,得到塔身和起重臂的体型系数、角度风系数和风压高度变化系数,并与国内外规范进行对比.结果表明:不同风向角下,塔身横风向风载荷可以忽略,而起重臂的横向风载荷必须考虑;塔身角度风系数计算方法与欧洲钢结构设计规范一致,但与我国起重机设计规范相差较大,建议以欧洲规范定义塔身角度风系数;塔身和起重臂角度风系数对风场特征不敏感;塔机气动外形的影响使得风压高度变化系数在不同风向角下不一致并表现出放大效应.塔机抗风设计可参考风载荷系数参数特征.

Abstract:

The expression of wind load coefficient was defined. The computational fluid dynamics (CFD) numerical simulation of the tower crane in twelve wind angles under uniform and B category flow field was completed. The shape coefficient, the skewed wind coefficient and the wind pressure height coefficient of the tower mast and jib were calculated and compared with the design of different countries. Results show that the crosswind load of mast could be ignored under different wind angles, while the wind load of jib must be considered; the calculation method of the skewed wind coefficient for the mast is consistent with the design of steel structures in European standard, while it differs greatly with the design rules for cranes of China, thus it is effective to define the skewed wind coefficient of mast by the European standard; the skewed wind coefficient of the jib and mast is not sensitive to the different categories of wind flow fields; the influence of the aerodynamic shape of the tower crane makes the wind pressure height coefficient inconsistent under different wind direction angles, showing the amplification effect. The characteristics of the wind load coefficient can provide reference to the wind-resistant design.

收稿日期: 2017-09-23 出版日期: 2018-12-13
CLC:  TU312  
基金资助:

国家自然科学基金资助项目(51205292);国家科技支撑计划资助项目(2014BAF08B05,2015BAF06B05);上海市科委重大科研计划资助项目

通讯作者: 秦仙蓉,女,教授.orcid.org/0000-0002-5792-5704.     E-mail: tjqin@tongji.edu.cn
作者简介: 陈伟(1985-),男,博士生,从事结构风工程研究.orcid.org/0000-0002-3878-0028.E-mail:jijiwww@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

陈伟, 秦仙蓉, 杨志刚. 塔式起重机塔身和起重臂的风载荷特征分析[J]. 浙江大学学报(工学版), 2018, 52(12): 2262-2270.

CHEN Wei, QIN Xian-rong, YANG Zhi-gang. Wind load characteristics analysis of mast and jib of tower crane. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2262-2270.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.12.003        http://www.zjujournals.com/eng/CN/Y2018/V52/I12/2262

[1] SOLAZZI L, ZRNIC N. Numerical study of wind actions applied to a low profile container crane[J]. FME Transactions, 2016, 44(1):29-35.
[2] BAYAR D C. Drag coefficients of latticed towers[J]. Journal of Structural Engineering, 1986, 112(2):417-430.
[3] 沈国辉, 项国通, 邢月龙, 等. 2种风场下格构式圆钢塔的天平测力试验研究[J]. 浙江大学学报:工学版, 2014, 48(4):704-710 SHEN Guo-hui, XIANG Guo-tong, XING Yue-long, et al. Experimental investigation of steel latticed towers with cylindrical members based on force balance tests under two wind flows[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(4):704-710
[4] EDEN J F, BUTLER A J, PATIENT J. Wind tunnel tests on model crane structures[J]. Engineering Structures, 1983, 5(4):289-298.
[5] 党会学, 赵均海, 张宏杰, 等. 三角形格构式塔身体型系数及屏蔽特性研究[J]. 计算力学学报, 2016, 33(3):362-368 DANG Hui-xue, ZHAO Jun-hai, ZHANG Hong-jie, et al. Study on shape coefficient and shielding effects of triangular latticed tower body[J]. Chinese Journal of Computational Mechanics, 2016, 33(3):362-368
[6] 谢华平, 何敏娟, 马人乐. 基于CFD模拟的格构塔平均风荷载分析[J]. 中南大学学报:自然科学版, 2010, 41(5):1980-1986 XIE Hua-ping, HE Min-juan, MA Ren-le. Analyse of mean wind load of lattice tower based on CFD simulation[J]. Journal of Central South University:Science and Technology, 2010, 41(5):1980-1986
[7] NAKAYAMA A, KAMOTO D, TAKEDA H, et al. Large-eddy simulation of flows past complex truss structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(3):133-144.
[8] GB/T 3811-2008. 起重机设计规范[S]. 北京:中国国家标注化管理委员会, 2008.
[9] ISO 4302-2016. Cranes-Wind load assessment[S]. Switz-erland:International Organization for Standardization, 2016.
[10] BS EN 1993-3-1:2006. Eurocode 3:Design of steel structures-part 3-1:towers, masts and chimneys-Towers and masts[S]. Brussel:European Committee for Standardization, 2006.
[11] ASCE7-05:2006. Minimum design loads for buildings and other structures[S]. Reston:American Society of Civil Engineers, 2006.
[12] JIS B 8830-2001. Cranes:Wind load assessment[S]. Tokyo:Japanese Industrial Standards Committee, 2001.
[13] AS/NZS 1170.2:2011. Structural Design Actions-Part 2:Wind actions[S]. Sydney:SAI Global Limited, 2011.
[14] BLOCKEN B. 50 years of computational wind engineering:past, present and future[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 129(6):69-102.
[15] LOHNER R, HAUG E, MICHALSKI A, et al. Recent advances in computational wind engineering and fluid-structure interaction[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 144:14-23.
[16] User's Guild:NBC-2005. Structural commentaries (part 4 of division B)[S]. Ottawa:National Building Code of Canada, 2005.
[17] AIJ-RLB-2004. Recommendations for loads on buildings[S]. Maruzen:Architectural Institute of Japan, 2004.
[18] BS EN 1991-1-4:2005. Eurocode 1:Actions on structures-part 1-4:General actions-Wind actions[S]. Brussel:European Committee for Standardization, 2005.
[19] 孙远, 马人乐, 邱旭. 三边形桅杆杆身风载荷特性风洞实验研究[J]. 湖南大学学报:自然科学版, 2017, 44(1):39-46 SUN Yuan, MA Ren-le, QIU Xu. Wind tunnel investigation on wind load characteristics of triangular guyed mast[J]. Journal of Hunan University:Natural Sciences, 2017, 44(1):39-46
[20] 张庆华, 马文勇. 多回路高压输电塔典型横担结构风力系数风洞试验研究[J]. 振动与冲击, 2016, 35(16):158-163 ZHANG Qin-hua, MA Wen-yong. Experimental study of wind force coefficients on typical cross arms of a multi-circuit high-voltage transmission tower[J]. Journal of Vibration and Shock, 2016, 35(16):158-163
[21] YANG F L, YANG J B, NIU H W, et al. Design wind loads for tubular-angle steel cross-arms of transmission towers under skewed wind loading[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 140:10-18.
[22] 杨风利. 角钢输电铁塔横担角度风荷载系数取值研究[J]. 工程力学, 2017, 34(4):150-159 YANG F L. Study on skewed wind load factor on cross-arms of angle steel transmission towers under skewed wind[J]. Engineering Mechanics, 2017, 34(4):150-159
[23] YANG F L, DANG H X, NIU H W, et al. Wind tunnel tests on wind loads acting on an angled steel triangular transmission tower[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156:93-103.
[24] SCHEWE G, LARSEN A. Reynolds number effects in the flow around a bluff bridge deck cross section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, s74-76(2):829-838.

[1] 夏永强, 肖南. T形钢连接梁柱半刚性节点初始转动刚度计算公式[J]. 浙江大学学报(工学版), 2018, 52(10): 1935-1942.
[2] 王海龙, 祝玉麒, 夏晋, 孙晓燕. 组合连接件对钢管-混凝土黏结性能的影响[J]. 浙江大学学报(工学版), 2018, 52(6): 1107-1113.
[3] 张扬, 沈国辉, 余世策, 马郁葱, 张瑞. 输电线风噪声的声学风洞试验[J]. 浙江大学学报(工学版), 2017, 51(8): 1494-1499.