| 
					
						| 
								
									| 计算机科学与人工智能 |  |     |  |  
    					|  |  
    					| 采用卷积自编码器网络的图像增强算法 |  
						| 王万良(  ),杨小涵,赵燕伟,高楠,吕闯,张兆娟 |  
					| 浙江工业大学 计算机科学与技术学院,机械工程学院,浙江 杭州 310023 |  
						|  |  
    					| Image enhancement algorithm with convolutional auto-encoder network |  
						| Wan-liang WANG(  ),Xiao-han YANG,Yan-wei ZHAO,Nan GAO,Chuang LV,Zhao-juan ZHANG |  
						| School of Computer Science and Technology, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China |  
					
						| 
								
									|  
          
          
            
             
												
												
												| 
												
												引用本文:
																																王万良,杨小涵,赵燕伟,高楠,吕闯,张兆娟. 采用卷积自编码器网络的图像增强算法[J]. 浙江大学学报(工学版), 2019, 53(9): 1728-1740.	
																															 
																																Wan-liang WANG,Xiao-han YANG,Yan-wei ZHAO,Nan GAO,Chuang LV,Zhao-juan ZHANG. Image enhancement algorithm with convolutional auto-encoder network. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1728-1740.	
																															 链接本文: 
																
																	
																	http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.09.012
																	   或   
																
																
																http://www.zjujournals.com/eng/CN/Y2019/V53/I9/1728
														    |  
            
									            
									                
																																															
																| 1 | GUO X, LI Y, LING H LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26 (2): 982- 993 doi: 10.1109/TIP.2016.2639450
 |  
																| 2 | 吕永标, 赵建伟, 曹飞龙 基于复合卷积神经网络的图像去噪算法[J]. 模式识别与人工智能, 2017, 30 (2): 97- 105 LV Yong-biao, ZHAO Jian-wei, CAO Fei-long Image denoising algorithm based on composite convolution neural network[J]. Pattern Recognition and Artificial Intelligence, 2017, 30 (2): 97- 105
 |  
																| 3 | RIVERA A R, RYU B, CHAE O Content-aware dark image enhancement through channel division[J]. IEEE Transactions on Image Processing, 2012, 21 (9): 3967- 3980 doi: 10.1109/TIP.2012.2198667
 |  
																| 4 | SINGH K, KAPOOR R image enhancement using exposure based sub image histogram equalization[J]. Pattern Recognition Letters, 2014, 36: 10- 14 doi: 10.1016/j.patrec.2013.08.024
 |  
																| 5 | REZA A M Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J]. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2004, 38 (1): 35- 44 doi: 10.1023/B:VLSI.0000028532.53893.82
 |  
																| 6 | 方帅, 杨静荣, 曹洋, 等 图像引导滤波的局部多尺度Retinex算法[J]. 中国图象图形学报, 2012, 17 (7): 748- 755 FANG Shuai, YANG Jing-rong, CAO Yang, et al A local multiscale Retinex algorithm for image guided filtering[J]. Journal of Image and Graphics, 2012, 17 (7): 748- 755
 |  
																| 7 | JOBSON D J, RAHMAN Z, WOODELL G A Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6 (3): 451- 462 doi: 10.1109/83.557356
 |  
																| 8 | 汪荣贵, 张新彤, 张璇, 等 基于Zernike矩的新型Retinex图像增强方法研究[J]. 中国图象图形学报, 2011, 16 (3): 310- 315 WANG Rong-giui, ZHANG Xin-tong, ZHANG Xuan, et al Research on the new Retinex image enhancment method based on zernike moment[J]. Journal of Image and Graphics, 2011, 16 (3): 310- 315
 |  
																| 9 | WANG J, LU K, XUE J, et al Single image dehazing based on the physical model and MSRCR algorithm[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, PP (99): 1- 1 |  
																| 10 | PARTHASARATHY S, SANKARAN P. An automated multi scale retinex with color restoration for image enhancement [C] // IEEE 2012 National Conference on Communications (NCC). Kharagpur: IEEE, 2012: 1-5. |  
																| 11 | PETRO A B, SBERT C, MOREL J M Multiscale Retinex[J]. Image Processing on Line, 2014, 71- 88 |  
																| 12 | FU X, ZENG D, HUANG Y, et al. A weighted variational model for simultaneous reflectance and illumination estimation [C] // Computer Vision and Pattern Recognition (CVPR). Las Vegas, Nevada, USA: IEEE, 2016. |  
																| 13 | 黄立威, 江碧涛, 吕守业, 等 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 1- 29 HUANG Li-wei, JIANG Bi-tao, LV Shou-ye, et al Review of the recommendation system based on deep learning[J]. Chinese Journal of Computers, 2018, 1- 29
 doi: 10.11897/SP.J.1016.2018.00001
 |  
																| 14 | SHEN L, YUE Z, FENG F, et al. Msr-net: low-light image enhancement using deep convolutional network [J]. ArXiv Preprint. ArXiv: 1711. 02488, 2017. |  
																| 15 | LI C, GUO J, PORIKLI F, et al LightenNet: a convolutional neural network for weakly illuminated image enhancement[J]. Pattern Recognition Letters, 2018, 104: 15- 22 doi: 10.1016/j.patrec.2018.01.010
 |  
																| 16 | 王万良. 人工智能及其应用: 第3版[M]. 北京: 高等教育出版社, 2015: 319. |  
																| 17 | LORE K G, AKINTAYO A, SARKAR S LLNet: A deep autoencoder approach to natural low-Light image enhancement[J]. Pattern Recognition, 2017, 61: 650- 662 doi: 10.1016/j.patcog.2016.06.008
 |  
																| 18 | 黄健航, 雷迎科 基于边际Fisher深度自编码器的电台指纹特征提取[J]. 模式识别与人工智能, 2017, 30 (11): 1030- 1038 HUANG Jian-hang, LEI Ying-ke Radio fingerprint feature extraction based on marginal fisher depth autoencoder[J]. Pattern Recognition and Artificial Intelligence, 2017, 30 (11): 1030- 1038
 |  
																| 19 | VINCENT P, LAROCHELLE H, BRNGIO Y, et al. Extracting and composing robust features with denoising autoencoders [C] // Proceedings of the 25th International Conference on Machine Learning (ICML2008). Helsinki: ACM, 2008: 1096-1103. |  
																| 20 | MASCI J, MEIER U, CIRESAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction [C] // International Conference on Artificial Neural Networks (ICANN). Springer, Berlin, Heidelberg: 2011: 52-59. |  
																| 21 | 袁非牛, 章琳, 史劲亭,等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1): 205-232. YUAN Fei-niu, ZHANG Lin, SHI Jin-ting,et al.Self-encoding neural network theory and application review [J]. Chinese Journal of Computers, 2019, 42(1): 205-232.
 |  
																| 22 | VINCENT P, LAROCHELLE H, LAJOIE I, et al Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11 (12): 3371- 3408 |  
																| 23 | 丁毅, 李玉惠, 李勃. 基于图像不同亮度区域特征的Gamma矫正方法[J]. 计算机技术与发展, 2016, 26(6): 37–39+45. DING Yi, LI Yu-hui, LI Bo. Gamma correction method based on features of different brightness regions of images[J]. Computer Technology and Development, 2016, 26(6): 37-39.
 |  
																| 24 | 张菲菲, 谢伟, 石强, 等 人眼视觉感知驱动的梯度域低照度图像对比度增强[J]. 计算机辅助设计与图形学学报, 2014, 26 (11): 1981- 1988 ZHANG Fei-fei, XIE Wei, SHI Qiang, et al Contrast enhancement of gradient domain low illumination image driven by human visual perception[J]. Journal of Computer-Aided Design and Computer Graphics, 2014, 26 (11): 1981- 1988
 |  
																| 25 | 张林, 程华, 房一泉 基于卷积神经网络的链接表示及预测方法[J]. 浙江大学学报: 工学版, 2018, 52 (3): 552- 559 ZHANG Lin, CHENG Hua, FANG Yi-quan Link representation and prediction method based on convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (3): 552- 559
 |  
																| 26 | GU J, WANG Z, KUEN J, et al Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354- 377 doi: 10.1016/j.patcog.2017.10.013
 |  
																| 27 | ZEILER M D, KRISHNAN D, TATLOR G W, et al. Deconvolutional networks [C] // Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2010: 2528-2535. |  
																| 28 | 袁公萍, 汤一平, 韩旺明, 等 基于深度卷积神经网络的车型识别方法[J]. 浙江大学学报: 工学版, 2018, 52 (4): 694- 702 YUAN Gong-ping, TANG Yi-ping, HAN Wang-ming, et al A vehicle identification method based on deep convolution neural network[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 694- 702
 |  
																| 29 | LOZA A, BULL D R, HILL P R, et al Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients[J]. Digital Signal Processing, 2013, 23 (6): 1856- 1866 doi: 10.1016/j.dsp.2013.06.002
 |  
																| 30 | YE X, WANG L, XING H, et al. Denoising hybrid noises in image with stacked autoencoder [C] // Information and Automation (ICIA), Lijiang: IEEE, 2015: 2720-2724. |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |