计算机科学与人工智能 |
|
|
|
|
基于长方形点过程的遥感图像汽车提取 |
余煇( ),柴登峰*( ) |
浙江大学 空间信息技术研究所,浙江 杭州 310058 |
|
Vehicle extraction from remotely sensed images based on rectangle marked point processes |
Hui YU( ),Deng-feng CHAI*( ) |
Institute of Space Information and Technique, Zhejiang University, Hangzhou 310058, China |
1 |
MOON H, CHELLAPPA R, ROSENFELD A Performance analysis of a simple vehicle detection algorithm[J]. Image and Vision Computing, 2002, 20 (1): 1- 13
doi: 10.1016/S0262-8856(01)00059-2
|
2 |
TAN Q, WANG J, ALDRED D A. Road vehicle detection and classification from very-high-resolution color digital orthoimagery based on object-oriented method [C] // IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2008. Boston: IEEE, 2008, 4: IV-475-IV-478.
|
3 |
GLEASON J, NEFIAN A V, BOUYSSOUNOUSSE X, et al. Vehicle detection from aerial imagery [C] // 2011 IEEE International Conference on Robotics and Automation (ICRA). Shanghai: IEEE, 2011: 2065-2070.
|
4 |
LIU K, MATTYUS G Fast multiclass vehicle detection on aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (9): 1938- 1942
doi: 10.1109/LGRS.2015.2439517
|
5 |
CHEN Z, WANG C, LUO H, et al Vehicle detection in high-resolution aerial images based on fast sparse representation classification and multiorder feature[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (8): 2296- 2309
doi: 10.1109/TITS.2016.2517826
|
6 |
CAO L, LUO F, CHEN L, et al Weakly supervised vehicle detection in satellite images via multi-instance discriminative learning[J]. Pattern Recognition, 2017, 64: 417- 424
doi: 10.1016/j.patcog.2016.10.033
|
7 |
YANG M Y, LIAO W, LI X, et al. Deep Learning for vehicle detection in aerial images [C] // 2018 25th IEEE International Conference on Image Processing (ICIP). Athens: IEEE, 2018: 3079-3083.
|
8 |
STOICA R, DESCOMBES X, ZERUBIA J A Gibbs point process for road extraction from remotely sensed images[J]. International Journal of Computer Vision, 2004, 57 (2): 121- 136
doi: 10.1023/B:VISI.0000013086.45688.5d
|
9 |
GE W, COLLINS R T. Marked point processes for crowd counting [C] // IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 2913-2920.
|
10 |
YU Y, LI J, GUAN H, et al A marked point process for automated building detection from lidar point-clouds[J]. Remote Sensing Letters, 2013, 4 (11): 1127- 1136
doi: 10.1080/2150704X.2013.846487
|
11 |
KOWAL M, KORBICZ J. Marked point process for nuclei detection in breast cancer microscopic images [C] // Polish Conference on Biocybernetics and Biomedical Engineering. Poland: Springer, 2017: 230-241.
|
12 |
VAN LIESHOUT M N M. Markov point processes and their applications [M]. London: Imperial College Press, 2000.
|
13 |
张东萍. 改进 Grabcut 算法在无人机影像船只识别中的应用与研究[D]. 天津: 天津大学, 2013. ZHANG Dong-ping. Applications and research of improved Grabcut algorithm on ship detection from UAV images[D]. Tianjin: Tianjin University, 2013.
|
14 |
CHAI D, SCHMIDT A, HEIPKE C Detecting linear features by spatial point processes[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, 2016, 41: 841- 848
|
15 |
GREEN P J Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[J]. Biometrika, 1995, 82 (4): 711- 732
doi: 10.1093/biomet/82.4.711
|
16 |
GAMERMAN D, LOPES H F. Markov chain Monte Carlo: stochastic simulation for Bayesian inference [M]. New York: Chapman and Hall/CRC, 2006.
|
17 |
GELMAN A, STERN H S, CARLIN J B, et al. Bayesian data analysis [M]. New York: Chapman and Hall/CRC, 2013.
|
18 |
GREEN P J, ?ATUSZY?SKI K, PEREYRA M, et al Bayesian computation: a summary of the current state, and samples backwards and forwards[J]. Statistics and Computing, 2015, 25 (4): 835- 862
doi: 10.1007/s11222-015-9574-5
|
19 |
石利平 模拟退火算法及改进研究[J]. 信息技术, 2013, (2): 176- 178 SHI Li-ping Research on simulated annealing algorithm and improvements[J]. Information Technology, 2013, (2): 176- 178
doi: 10.3969/j.issn.1009-2552.2013.02.051
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|