Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (4): 683-692    DOI: 10.3785/j.issn.1008-973X.2023.04.005
自动化技术、计算机技术     
基于神经形态的触觉滑动感知方法
张超凡1,3(),乔一铭2,曹露2,*(),王志刚2,崔少伟1,王硕1,3
1. 中国科学院自动化研究所 多模态人工智能系统全国重点实验室,北京 100190
2. 英特尔中国研究院,北京 100190
3. 中国科学院大学 人工智能学院,北京 100049
Tactile slip detection method based on neuromorphic modeling
Chao-fan ZHANG1,3(),Yi-ming QIAO2,Lu CAO2,*(),Zhi-gang WANG2,Shao-wei CUI1,Shuo WANG1,3
1. State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2. Intel Labs China, Beijing 100190, China
3. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1475 KB)   HTML
摘要:

聚焦基于神经形态的触觉感知,构建触觉感知实验平台,研究基于脉冲神经网络的接触物体滑动检测方法. 使用GelStereo触觉传感器采集接触表面标记点位移场触觉信息流,采用2种方式(地址位移表示(ADR)和地址事件表示(AER))对位移场流进行脉冲编码. 基于脉冲响应模型(SRM)构建滑动检测网络,在英特尔神经形态硬件Loihi上完成了网络部署. 实验结果表明,基于地址位移表示的脉冲响应模型准确率达到94.8%,F1分数达到95.7%. Loihi模型(针对神经形态硬件Loihi实现的特化脉冲响应模型)准确率达到93.8%,F1分数达到94.8%. 所构建的脉冲神经网络在触觉滑动感知任务中实现了与人工神经网络(ANNs)相比拟的预测精度和更短的推理时间,在功耗上具有显著优势.

关键词: 类脑信息处理脉冲神经网络人工神经网络触觉感知神经形态滑动检测    
Abstract:

A tactile perception platform was constructed by focusing on neuromorphic-based tactile perception in order to analyze slip detection methods based on spiking neural networks (SNNs). The GelStereo sensor was used to capture the tactile information flow in the form of markers displacement field on the contact surface. Address-displacement representation (ADR) and address-event representation (AER) were analyzed to pulse-encode the markers displacement field. Slip detection networks were proposed based on the spike response model (SRM). The proposed network was deployed in the neuromorphic hardware - Intel Loihi chip. The experimental results show that the proposed SNN method with ADR achieved 94.8% accuracy and 95.7% F1 score in SRM, 93.8% accuracy and 94.8% F1 score in Loihi model (a specialized SRM for Loihi hardware). The well-trained SNNs for slip detection achieved comparable performance with artificial neural networks (ANNs) both on accuracy and F1 score with less inference time, and showed a significant advantage in power consumption.

Key words: brain-inspired information processing    spiking neural network    artificial neural network    tactile perception    neuromorphic    slip detection
收稿日期: 2022-12-07 出版日期: 2023-04-21
CLC:  TP 242  
基金资助: 科技创新 2030—“新一代人工智能”重大项目(2018AAA0103003)
通讯作者: 曹露     E-mail: zhangchaofan2020@ia.ac.cn;lu.cao@intel.com
作者简介: 张超凡(1998—),女,博士生,从事机器人触觉感知及灵巧操作的研究. orcid.org/—0000-0003-2605-9097. E-mail: zhangchaofan2020@ia.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张超凡
乔一铭
曹露
王志刚
崔少伟
王硕

引用本文:

张超凡,乔一铭,曹露,王志刚,崔少伟,王硕. 基于神经形态的触觉滑动感知方法[J]. 浙江大学学报(工学版), 2023, 57(4): 683-692.

Chao-fan ZHANG,Yi-ming QIAO,Lu CAO,Zhi-gang WANG,Shao-wei CUI,Shuo WANG. Tactile slip detection method based on neuromorphic modeling. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 683-692.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.005        https://www.zjujournals.com/eng/CN/Y2023/V57/I4/683

图 1  神经形态触觉滑动感知的实验系统
图 2  GelStereo触觉传感的示意图
图 3  地址位移表示的示意图
图 4  地址事件表示的示意图
图 5  SNN-ADR网络结构
图 6  SNN-AER网络结构
图 7  数据采集平台和数据集中的部分物体
响应模型 A P R F1
SRM 94.8 93.8 97.7 95.7
Loihi 93.8 94.3 95.3 94.8
表 1  SNN-ADR网络的预测结果
网络模型 A P R F1
CNN 97.5 96.5 97.4 96.9
CNN-LSTM 96.3 97.2 93.6 95.4
表 2  人工神经网络的预测结果
图 8  准确率随PSP核长度的变化曲线
方法 设备 Pc/mW t/ms E/mJ
CNN TX2(Q) 129.50 20.39 2.64
CNN-LSTM TX2(Q) 163.18 37.96 6.19
CNN TX2(N) 957.34 8.44 8.08
CNN-LSTM TX2(N) 963.26 15.28 14.72
SNN-ADR Loihi 23.40 7.913 0.185
表 3  不同方法/设备的功耗和推理速度测试结果
响应模型 A P R F1
SRM 97.42 98.43 97.03 97.72
Loihi 93.80 98.19 90.85 94.37
表 4  SNN-AER网络的预测结果
1 DAYAN P, ABBOTT L F. Theoretical neuroscience: computational and mathematical modeling of neural systems [M]. Cambridge: MIT Press, 2005.
2 BOOTH V, BOSE A Neural mechanisms for generating rate and temporal codes in model CA3 pyramidal cells[J]. Journal of Neurophysiology, 2001, 85 (6): 2432- 2445
doi: 10.1152/jn.2001.85.6.2432
3 SEVERSON K S, XU D, VAN DE LOO M, et al Active touch and self-motion encoding by merkel cell-associated afferents[J]. Neuron, 2017, 94 (3): 666- 676
doi: 10.1016/j.neuron.2017.03.045
4 DAVIES M, SRINIVASA N, LIN T H, et al Loihi: a neuromorphic manycore processor with on-chip learning[J]. IEEE Micro, 2018, 38 (1): 82- 99
doi: 10.1109/MM.2018.112130359
5 吴朝晖 类脑研究: 为人类构建超级大脑[J]. 浙江大学学报: 工学版, 2020, 54 (3): 425- 426
WU Zhao-hui Cybrain: building superbrain for humans[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (3): 425- 426
6 CUI S, WEI J, LI X, et al Generalized visual-tactile transformer network for slip detection[J]. IFAC-PapersOnLine, 2020, 53 (2): 9529- 9534
doi: 10.1016/j.ifacol.2020.12.2430
7 JAMES J W, PESTELL N, LEPORA N F Slip detection with a biomimetic tactile sensor[J]. IEEE Robotics and Automation Letters, 2018, 3 (4): 3340- 3346
doi: 10.1109/LRA.2018.2852797
8 ZHANG Y, KAN Z, TSE Y A, et al. FingerVision tactile sensor design and slip detection using convolutional LSTM network [EB/OL]. [2022-10-13]. https://arxiv.org/abs/1810.02653.
9 WARD-CHERRIER B, ROJAS N, LEPORA N F Model-free precise in-hand manipulation with a 3D-printed tactile gripper[J]. IEEE Robotics and Automation Letters, 2017, 2 (4): 2056- 2063
doi: 10.1109/LRA.2017.2719761
10 LUO S, BIMBO J, DAHIYA R, et al Robotic tactile perception of object properties: a review[J]. Mechatronics, 2017, 48: 54- 67
doi: 10.1016/j.mechatronics.2017.11.002
11 CHI C, SUN X, XUE N, et al Recent progress in technologies for tactile sensors[J]. Sensors, 2018, 18 (4): 948
doi: 10.3390/s18040948
12 YUAN W, DONG S, ADELSON E H Gelsight: high-resolution robot tactile sensors for estimating geometry and force[J]. Sensors, 2017, 17 (12): 2762
doi: 10.3390/s17122762
13 DONLON E, DONG S, LIU M, et al. GelSlim: a high-resolution, compact, robust, and calibrated tactile-sensing finger [C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 1927-1934.
14 MA D, DONLON E, DONG S, et al. Dense tactile force estimation using GelSlim and inverse FEM [C]// 2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 5418-5424.
15 TAYLOR I H, DONG S, RODRIGUEZ A. GelSlim 3.0: high-resolution measurement of shape, force and slip in a compact tactile-sensing finger [C]// 2022 International Conference on Robotics and Automation. Philadelphia: IEEE, 2022: 10781-10787.
16 LEPORA N F Soft biomimetic optical tactile sensing with the TacTip: a review[J]. IEEE Sensors Journal, 2021, 21 (19): 21131- 21143
doi: 10.1109/JSEN.2021.3100645
17 YAMAGUCHI A, ATKESON C G. Implementing tactile behaviors using FingerVision [C]// 2017 IEEE-RAS 17th International Conference on Humanoid Robotics. Birmingham: IEEE, 2017: 241-248.
18 CUI S, WANG R, HU J, et al In-hand object localization using a novel high-resolution visuotactile sensor[J]. IEEE Transactions on Industrial Electronics, 2021, 69 (6): 6015- 6025
19 CUI S, WANG R, HU J, et al Self-supervised contact geometry learning by GelStereo visuotactile sensing[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 1- 9
20 ABAD A C, RANASINGHE A Visuotactile sensors with emphasis on gelsight sensor: a review[J]. IEEE Sensors Journal, 2020, 20 (14): 7628- 7638
doi: 10.1109/JSEN.2020.2979662
21 LEE W W, TAN Y J, YAO H, et al A neuro-inspired artificial peripheral nervous system for scalable electronic skins[J]. Science Robotics, 2019, 4 (32): eaax2198
doi: 10.1126/scirobotics.aax2198
22 WARD-CHERRIER B, PESTELL N, LEPORA N F. Neurotac: a neuromorphic optical tactile sensor applied to texture recognition [C]// 2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 2654-2660.
23 KUMAGAI K, SHIMONOMURA K. Event-based tactile image sensor for detecting spatio-temporal fast phenomena in contacts [C]// 2019 IEEE World Haptics Conference. Tokyo: IEEE, 2019: 343-348.
24 RUECKAUER B, LUNGU I A, HU Y, et al Conversion of continuous-valued deep networks to efficient event-driven networks for image classification[J]. Frontiers in Neuroscience, 2017, 11: 682
doi: 10.3389/fnins.2017.00682
25 SENGUPTA A, YE Y, WANG R, et al Going deeper in spiking neural networks: VGG and residual architectures[J]. Frontiers in Neuroscience, 2019, 13: 95
doi: 10.3389/fnins.2019.00095
26 NEFTCI E O, MOSTAFA H, ZENKE F Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks[J]. IEEE Signal Processing Magazine, 2019, 36 (6): 51- 63
doi: 10.1109/MSP.2019.2931595
27 SHRESTHA S B, ORCHARD G. Slayer: spike layer error reassignment in time [EB/OL]. [2022-10-13]. https://proceedings.neurips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html.
28 SEE H H, LIM B, LI S, et al. ST-MNIST: the spiking tactile MNIST neuromorphic dataset [EB/OL]. [2022-10-13]. https://arxiv.org/abs/2005.04319.
29 TAUNYAZOV T, SNG W, SEE H H, et al. Event-driven visual-tactile sensing and learning for robots [EB/OL]. [2022-10-13]. https://arxiv.org/abs/2009.07083.
30 GU F, SNG W, TAUNYAZOV T, et al. Tactilesgnet: a spiking graph neural network for event-based tactile object recognition [C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020: 9876-9882.
31 BARTOLOZZI C, ROS P M, DIOTALEVI F, et al. Event-driven encoding of off-the-shelf tactile sensors for compression and latency optimisation for robotic skin [C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE, 2017: 166-173.
32 YI Z, ZHANG Y, PETERS J Biomimetic tactile sensors and signal processing with spike trains: a review[J]. Sensors and Actuators A: Physical, 2018, 269: 41- 52
doi: 10.1016/j.sna.2017.09.035
33 YI Z, XU T, GUO S, et al Tactile surface roughness categorization with multineuron spike train distance[J]. IEEE Transactions on Automation Science and Engineering, 2020, 18 (4): 1835- 1845
34 DABBOUS A, MASTELLA M, NATARAJAN A, et al. Artificial bio-inspired tactile receptive fields for edge orientation classification [C]// 2021 IEEE International Symposium on Circuits and Systems. Daegu: IEEE, 2021: 1-5.
35 TAUNYAZOV T, CHUA Y, GAO R, et al. Fast texture classification using tactile neural coding and spiking neural network [C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020: 9890-9895.
36 LI J, DONG S, ADELSON E. Slip detection with combined tactile and visual information [C]// 2018 IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 7772-7777.
37 ZHANG Y, YUAN W, KAN Z, et al. Towards learning to detect and predict contact events on vision-based tactile sensors [C]// Conference on Robot Learning. [S.l.]: MIT, 2020: 1395-1404.
38 BOAHEN K A Point-to-point connectivity between neuromorphic chips using address events[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2000, 47 (5): 416- 434
doi: 10.1109/82.842110
39 GERSTNER W Time structure of the activity in neural network models[J]. Physical Review E, 1995, 51 (1): 738
doi: 10.1103/PhysRevE.51.738
40 崔少伟, 魏俊杭, 王睿, 等 基于视触融合的机器人抓取滑动检测[J]. 华中科技大学学报: 自然科学版, 2020, 48 (1): 98- 102
CUI Shao-wei, WEI Jun-hang, WANG Rui, et al Robotic grasp slip detection based on visual-tactile fusion[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2020, 48 (1): 98- 102
[1] 王意存,邢江宽,罗坤,王海鸥,樊建人. 基于物理信息神经网络的燃烧化学微分方程求解[J]. 浙江大学学报(工学版), 2022, 56(10): 2084-2092.
[2] 程鸿,胡佳杰,刘勇,叶远青. 强度传输方程和神经网络融合的三维重构算法[J]. 浙江大学学报(工学版), 2021, 55(4): 658-664.
[3] 刘芳,汪震,刘睿迪,王锴. 基于组合损失函数的BP神经网络风力发电短期预测方法[J]. 浙江大学学报(工学版), 2021, 55(3): 594-600.
[4] 高正伟,金台,宋昌成,罗坤,樊建人. 基于人工神经网络的超临界小火焰模型研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1968-1977.
[5] 黄赠, 王锐, 赵宇, 魏振磊. 隐伏断层地震诱发滑坡易发性评价[J]. 浙江大学学报(工学版), 2017, 51(11): 2136-2143.
[6] 江衍铭, 张建全, 明焱. 集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8): 1471-1478.
[7] 刘凯, 张立民, 张超. 受限玻尔兹曼机的新混合稀疏惩罚机制[J]. 浙江大学学报(工学版), 2015, 49(6): 1070-1078.
[8] 柯海丰,应晶. 基于R-ELM的实时车牌字符识别技术[J]. 浙江大学学报(工学版), 2014, 48(7): 1209-1216.
[9] 柯海丰,应晶. 基于R-ELM的实时车牌字符识别技术[J]. J4, 2014, 48(2): 0-0.
[10] 谢迪, 童若锋, 唐敏, 冯阳. 具有高区分度的视频火焰检测方法[J]. J4, 2012, 46(4): 698-704.
[11] 任沙浦, 沈国江. 短时交通流智能混合预测技术[J]. J4, 2010, 44(8): 1473-1478.
[12] 孔祥杰, 沈国江, 梁同海. 具有公交优先的路网交通流智能协调控制[J]. J4, 2009, 43(6): 1026-1031.
[13] 谭大鹏 李培玉 潘晓弘. 基于振动信号测量的连铸下渣检测系统[J]. J4, 2008, 42(8): 1399-1403.
[14] 顾正华. 河网水闸智能调度辅助决策模型研究[J]. J4, 2006, 40(5): 822-826.
[15] 周明华 汪国昭. 神经网络在二氧化碳提纯塔建模中的应用[J]. J4, 2006, 40(2): 352-355.