土木工程、交通工程 |
|
|
|
|
基于最优汇集时间间隔的城市间断交通流预测 |
王殿海( ),谢瑞,蔡正义*( ) |
浙江大学 智能交通研究所,浙江 杭州 310058 |
|
Prediction of urban interrupted traffic flow based on optimal convergence time interval |
Dian-hai WANG( ),Rui XIE,Zheng-yi CAI*( ) |
Intelligent Transportation Research Institute, Zhejiang University, Hangzhou 310058, China |
1 |
郭敏, 肖翔, 蓝金辉 道路交通流短时预测方法综述[J]. 自动化技术与应用, 2009, 28 (6): 8- 9 GUO Min, XIAO Xiang, LAN Jin-hui Summary of short-term prediction methods for road traffic flow[J]. Automation Technology and Application, 2009, 28 (6): 8- 9
doi: 10.3969/j.issn.1003-7241.2009.06.003
|
2 |
王均, 关伟 基于Kalman滤波的城市环路交通流短时预测研究[J]. 交通信息与安全, 2006, 24 (5): 16- 19 WANG Jun, GUAN Wei Research on short-term prediction on of urban ring road traffic flow based on Kalman filtering[J]. Traffic Information and Safety, 2006, 24 (5): 16- 19
doi: 10.3963/j.issn.1674-4861.2006.05.005
|
3 |
EMAMI A, SARVI M, BAGLOEE S A Short-term traffic flow prediction based on faded memory Kalman Filter fusing data from connected vehicles and Bluetooth sensors[J]. Simulation Modelling Practice and Theory, 2020, 102: 1- 17
|
4 |
KUMAR S V, VANAJAKSHI L Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J]. European Transport Research Review, 2015, 7 (3): 1- 9
|
5 |
GIRAKA O, SELVARAJ V K Short-term prediction of intersection turning volume using seasonal ARIMA model[J]. Transportation Letters, 2020, 12 (7): 483- 490
doi: 10.1080/19427867.2019.1645476
|
6 |
傅贵, 韩国强, 逯峰, 等 基于支持向量回归的短时交通流预模型[J]. 华南理工大学学报: 自然科学版, 2013, 41 (9): 71- 76 FU Gui, HAN Guo-qiang, LU Feng, et al Short term traffic flow prediction model based on support vector machine regression[J]. Journal of South China University of Technology: Natural Science Edition, 2013, 41 (9): 71- 76
|
7 |
CHENG S F, LU F, PENG P, et al Short-term traffic forecasting: an adaptive ST-KNN model that considers spatial heterogeneity[J]. Computers Environment and Urban Systems, 2018, 71: 186- 198
doi: 10.1016/j.compenvurbsys.2018.05.009
|
8 |
ZHAO Z, CHEN W H, WU X M, et al LSTM network: a deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11 (2): 68- 75
doi: 10.1049/iet-its.2016.0208
|
9 |
殷齐, 丁飞, 朱跃, 等 基于CNN与多尺度特征融合城市交通流预测模型[J]. 计算机技术与发展, 2022, 32 (10): 175- 181 YIN Qi, DING Fei, ZHU Yue, et al An urban traffic flow prediction model based on CNN and Multi-scale feature fusion[J]. Computer Technology and Development, 2022, 32 (10): 175- 181
doi: 10.3969/j.issn.1673-629X.2022.10.029
|
10 |
KIM Y, WANG P, ZHU Y F, et al. A capsule network for traffic speed prediction in complex road networks [C]// 2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF). Bonn: IEEE, 2018: 1–6
|
11 |
TIAN C Y, CHAN W K Spatial-temporal attention wavenet: a deep learning framework for traffic prediction considering spatial-temporal dependencies[J]. IET Intelligent Transport Systems, 2021, 1 (4): 549- 561
|
12 |
TANG J J, ZENG J Spatiotemporal gated graph attention. network for urban traffic flow prediction based on license plate recognition data[J]. Computer-aided Civil and Infrastructure Engineering, 2022, 37: 3- 23
doi: 10.1111/mice.12688
|
13 |
路佳玲, 魏志成, 田多. 基于时空图卷积网络的城市交通流预测模型 [J]. 武汉理工大学学报: 交通科学与版, 2023, 47(2): 234–238. LU Jia-ling, WEI Zhi-cheng, TIAN Duo. Urban traffic flow prediction model based on spatio-temporal graph convolutional network [J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2023, 47(2): 234–238.
|
14 |
LI F X, FENG J, YAN H, et al. Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution [EB/OL]. [2021-05-03]. https://arxiv.org/abs/2104.14917v2.
|
15 |
ZHENG C P, FAN X L, WANG C, et al GMAN: a graph multi-attention network for traffic prediction[J]. Association for the Advancement of Artificial Intelligence, 2020, 34 (1): 1234- 1241
|
16 |
ZELLNER A, MONTMARQUETTE C A study of some aspects of temporal aggregation problems in econometric analyses[J]. The Review of Economics and Statistics, 1971, 53 (4): 335- 342
doi: 10.2307/1928734
|
17 |
ROSSANA R J, SEATER J J Temporal aggregation and economic time series[J]. Journal of Business and Economic Statistics, 1995, 13: 441- 451
|
18 |
VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C Statistical methods for detecting nonlinearity and nonstationarity in univariate short-term time-series of traffic volume[J]. Transportation Research Part C, 2006, 14 (5): 351- 367
doi: 10.1016/j.trc.2006.09.002
|
19 |
BYRON J, SHAWN M T, WILLIAM L E, et al. Intelligent transportation system data archiving: statistical techniques for determining optimal aggregation widths for inductance loop detectors[J]. Transportation Research Record, 2000: 85-93.
|
20 |
PARK D, RILETT L R, GAJEWSKI B J, et al Identifying optimal data aggregation interval sizes for link and corridor travel time estimation and forecasting[J]. Transportation, 2009, 36 (1): 77- 95
doi: 10.1007/s11116-008-9180-x
|
21 |
SMITH B L, ULMER J M Freeway traffic flow rate measurement: investigation into impact of measurement time interval[J]. Journal of Transportation Engineering, 2003, 129 (3): 223- 229
doi: 10.1061/(ASCE)0733-947X(2003)129:3(223)
|
22 |
于雷, 陈旭梅, 耿彦斌, 等 基于小波分解的智能交通系统数据集成方法[J]. 清华大学学报: 自然科学版, 2004, 44 (6): 793- 796 YU Lei, CHEN Xu-mei, GENG Yan-bin, et al Data integration method of intelligent transportation system based on wavenet decomposition[J]. Journal of Tsinghua University: Natural Science Edition, 2004, 44 (6): 793- 796
|
23 |
陆振波, 夏井新, 焦恬恬, 等 城市道路交通流监测数据最优汇集时间间隔分析[J]. 东南大学学报: 自然科学版, 2012, 42 (5): 1000- 1005 LU Zhen-bo, XIA Jing-xin, JIAO Tian-tian, et al Analysis of optimal collection time interval of urban road traffic flow monitoring data[J]. Journal of Southeast University: Natural Scienc Edition, 2012, 42 (5): 1000- 1005
|
24 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|