Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (2): 349-359    DOI: 10.3785/j.issn.1008-973X.2024.02.013
机械工程     
基于图神经网络的零件机加工特征识别方法
姚鑫骅(),于涛,封森文,马梓健,栾丛丛,沈洪垚
浙江大学 机械工程学院,浙江省三维打印工艺与装备重点实验室,流体动力基础件与机电系统全国重点实验室,浙江 杭州 310027
Recognition method of parts machining features based on graph neural network
Xinhua YAO(),Tao YU,Senwen FENG,Zijian MA,Congcong LUAN,Hongyao SHEN
School of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2518 KB)   HTML
摘要:

针对现有基于深度学习的方法存在的难以识别相交特征、无法精确确定加工特征面的问题,提出基于图神经网络的加工特征识别方法. 通过压缩激励模块提取节点与邻接边的特征,构建节点级与邻接边级的双层注意力网络,分割每个节点对应的加工特征. 该方法充分利用了零件模型的面特征与边特征,结合零件模型的拓扑结构,基于注意力机制对特征信息进行深度学习,可以有效地解决非面合并相交特征的识别问题. 在多加工特征零件数据集上,将该方法与其他3种特征识别方法进行实验对比,在准确率、平均类准确率和交并比3项指标上均取得最优结果,识别准确率高于95%.

关键词: 加工特征属性邻接图图神经网络注意力机制深度学习    
Abstract:

A method for recognizing machining features based on graph neural networks was proposed in order to address the difficulties in identifying intersecting features and accurately determining machining feature surfaces in existing deep learning-based approaches. Features of nodes and adjacent edges were extracted through a compression activation module, and a dual-layer attention network at the node and adjacent edge levels was constructed in order to segment the machining features corresponding to each node. The surface features and edge features of the part model were fully used combined with the topological structure of the part model. The recognition problem of non-face merged intersecting features was effectively addressed by employing attention mechanisms for deep learning on the feature information. The proposed method was experimentally compared with three other feature recognition methods on a dataset of parts with multiple machining features. The optimal results were obtained in terms of accuracy, average class accuracy and intersection-over-union metrics. The recognition accuracy exceeded 95%.

Key words: machining feature    attribute adjacency graph    graph neural network    attention mechanism    deep learning
收稿日期: 2023-07-03 出版日期: 2024-01-23
CLC:  TH?166  
基金资助: 浙江省重点研发计划资助项目 (2021C01096);浙江省杰出青年科学基金资助项目(LR22E050002).
作者简介: 姚鑫骅(1978—),男,副教授,博士,从事智能制造的研究. orcid.org/0000-0003-0261-3938. E-mail:yaoxinhuame@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
姚鑫骅
于涛
封森文
马梓健
栾丛丛
沈洪垚

引用本文:

姚鑫骅,于涛,封森文,马梓健,栾丛丛,沈洪垚. 基于图神经网络的零件机加工特征识别方法[J]. 浙江大学学报(工学版), 2024, 58(2): 349-359.

Xinhua YAO,Tao YU,Senwen FENG,Zijian MA,Congcong LUAN,Hongyao SHEN. Recognition method of parts machining features based on graph neural network. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 349-359.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.02.013        https://www.zjujournals.com/eng/CN/Y2024/V58/I2/349

图 1  相交边凹凸性算法的示意图
图 2  曲线采样结果的对比
图 3  零件模型及对应的采样点分布
图 4  加工特征识别网络的整体架构
图 5  基于压缩激励网络的特征提取
节点特征提取网络各层输入特征尺寸输出特征尺寸
Conv2d(7,64,3,1,1)(Nv,7,10,10)(Nv,64,10,10)
SE(16)(Nv,64,10,10)(Nv,64,10,10)
Conv2d(64,128,3,1,2)(Nv,64,10,10)(Nv,128,5,5)
SE(16)(Nv,128,5,5)(Nv,128,5,5)
Conv2d(128,256,3,1,2)(Nv,128,5,5)(Nv,256,3,3)
SE(16)(Nv,256,3,3)(Nv,256,3,3)
MixPool(Nv,256,3,3)(Nv,256,1,1)
Reshape(Nv,256,1,1)(Nv,256)
Linear(Nv,256)(Nv,64)
表 1  节点特征提取网络的参数
边特征提取网络各层输入特征尺寸输出特征尺寸
Conv1d(7,64,3,1,1)(Ne,7,10)(Ne,64,10)
SE(16)(Ne,64,10)(Ne,64,10)
Conv1d(64,128,3,1,2)(Ne,64,10)(Ne,128,5)
SE(16)(Ne,128,5)(Ne,128,5)
Conv1d(128,256,3,1,2)(Ne,128,5)(Ne,256,3)
SE(16)(Ne,256,3)(Ne,256,3)
MixPool(Ne,256,3)(Ne,256,1)
Reshape(Ne,256,1)(Ne,256)
Linear(Ne,256)(Ne,64)
表 2  边特征提取网络的参数
图 6  节点注意力模块
图 7  多加工特征数据集的特征类型
图 8  多加工特征数据集模型的示例
图 9  多加工特征数据集特征与特征面分布
图 10  多加工特征数据集验证集的准确率与交并比曲线
模型AApcIoU
基于面基于点基于面基于点基于面基于点
本文
模型
97.3595.1592.16
PointNet38.8575.5232.0435.4920.4527.53
UV-Net94.6591.2586.31
DGCNN51.4485.6546.0654.0831.9940.95
表 3  多加工特征数据集的不同模型实验结果比较
图 11  零件模型特征的识别结果
模型AApcIoU
完整网络模型97.3595.1592.16
去除邻接边特征96.3693.4689.60
去除图注意力网络85.7186.6578.52
只保留拓扑结构40.2527.1117.12
表 4  消融实验不同参数结果的比较
1 VANDENBRANDE J H, REQUICHA A G Spatial reasoning for the automatic recognition of machinable features in solid models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15 (12): 1269- 1285
doi: 10.1109/34.250845
2 VERMA A K, RAJOTIA S A hint-based machining feature recognition system for 2.5 D parts[J]. International Journal of Production Research, 2008, 46 (6): 1515- 1537
doi: 10.1080/00207540600919373
3 WU J, LEI R, PENG Y. Manufacturing feature recognition method based on subgraph decomposition [C]// International Conference on Frontiers of Artificial Intelligence and Machine Learning . Hangzhou: IEEE, 2022: 120–126.
4 YAN H, YAN C, YAN P, et al Manufacturing feature recognition method based on graph and minimum non-intersection feature volume suppression[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125 (11/12): 5713- 5732
5 易晗. 基于图和规则的钣金件特征识别方法研究[D]. 武汉: 华中科技大学, 2019.
YI Han. Research on feature recognition method of sheet metal parts based on graphs and rules [D]. Wuhan: Huazhong University of Science and Technology, 2019.
6 WOO Y, SAKURAI H Recognition of maximal features by volume decomposition[J]. Computer-Aided Design, 2002, 34 (3): 195- 207
doi: 10.1016/S0010-4485(01)00080-X
7 ZHANG Z, JAISWAL P, RAI R Featurenet: machining feature recognition based on 3d convolution neural network[J]. Computer-Aided Design, 2018, 101: 12- 22
doi: 10.1016/j.cad.2018.03.006
8 SHI P, QI Q, QIN Y, et al A novel learning-based feature recognition method using multiple sectional view representation[J]. Journal of Intelligent Manufacturing, 2020, (31): 1291- 1309
9 MA Y, ZHANG Y, LUO X. Automatic recognition of machining features based on point cloud data using convolution neural networks [C]// Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science . Wuhan: ACM, 2019: 229-235.
10 QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3d classification and segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Hawaii: IEEE, 2017: 652-660.
11 高玉龙. 基于加工面点云数据深度学习的加工特征自动识别[D]. 大连: 大连理工大学, 2021.
GAO Yulong. Automatic recognition of machining features based on deep learning for machining surface point cloud data [D]. Dalian: Dalian University of Technology, 2021.
12 YAO X, WANG D, YU T, et al A machining feature recognition approach based on hierarchical neural network for multi-feature point cloud models[J]. Journal of Intelligent Manufacturing, 2023, 34 (6): 2599- 2610
doi: 10.1007/s10845-022-01939-8
13 CAO W, ROBINSON T, HUA Y, et al. Graph representation of 3d CAD models for machining feature recognition with deep learning [C]// International Design Engineering Technical Conferences and Computers and Information in Engineering Conference . [S. 1. ]: ASME, 2020, 84003: 202-212.
14 PAGANI L, SCOTT P J Curvature based sampling of curves and surfaces[J]. Computer Aided Geometric Design, 2018, (59): 32- 48
15 胡盼旺. 复杂回转类零件自动特征识别算法研究[D]. 武汉: 华中科技大学, 2019.
HU Panwang. Feature recognition based on graphs and rules for rotational parts [D]. Wuhan: Huazhong University of Science and Technology, 2019.
16 MEYER M, DESBRUN M, SCHRÖDER P, et al. Discrete differential-geometry operators for triangulated 2-manifolds [C]// Visualization and Mathematics III . [S. 1. ]: Springer-Verlag, 2003: 35-57.
17 PAULY M, GROSS M, KOBBELT L P. Efficient simplification of point-sampled surfaces [C]// I EEE Visualization . Boston: IEEE, 2002: 163-170.
18 HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Beijing: IEEE, 2018: 7132-7141.
19 PAVIOT T. Pythonocc (7.7. 0) [EB/OL]. (2022-10-05)[2023-04-05].https://doi.org/10.5281/zenodo.3605364.
20 JAYARAMAN P K, SANGHI A, LAMBOURNE J G, et al. Uv-net: learning from boundary representations [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S. 1. ]: IEEE, 2021: 11703-11712.
[1] 秦思怡,盖绍彦,达飞鹏. 混合采样下多级特征聚合的视频目标检测算法[J]. 浙江大学学报(工学版), 2024, 58(1): 10-19.
[2] 孙雪菲,张瑞峰,关欣,李锵. 强化先验骨架结构的轻量型高效人体姿态估计[J]. 浙江大学学报(工学版), 2024, 58(1): 50-60.
[3] 郑超昊,尹志伟,曾钢锋,许月萍,周鹏,刘莉. 基于时空深度学习模型的数值降水预报后处理[J]. 浙江大学学报(工学版), 2023, 57(9): 1756-1765.
[4] 李海烽,张雪英,段淑斐,贾海蓉,Huizhi Liang . 融合生成对抗网络与时间卷积网络的普通话情感识别[J]. 浙江大学学报(工学版), 2023, 57(9): 1865-1875.
[5] 赵小强,王泽,宋昭漾,蒋红梅. 基于动态注意力网络的图像超分辨率重建[J]. 浙江大学学报(工学版), 2023, 57(8): 1487-1494.
[6] 王慧欣,童向荣. 融合知识图谱的推荐系统研究进展[J]. 浙江大学学报(工学版), 2023, 57(8): 1527-1540.
[7] 宋秀兰,董兆航,单杭冠,陆炜杰. 基于时空融合的多头注意力车辆轨迹预测[J]. 浙江大学学报(工学版), 2023, 57(8): 1636-1643.
[8] 李晓艳,王鹏,郭嘉,李雪,孙梦宇. 基于双注意力机制的多分支孪生网络目标跟踪[J]. 浙江大学学报(工学版), 2023, 57(7): 1307-1316.
[9] 杨哲,葛洪伟,李婷. 特征融合与分发的多专家并行推荐算法框架[J]. 浙江大学学报(工学版), 2023, 57(7): 1317-1325.
[10] 李云红,段姣姣,苏雪平,张蕾涛,于惠康,刘杏瑞. 基于改进生成对抗网络的书法字生成算法[J]. 浙江大学学报(工学版), 2023, 57(7): 1326-1334.
[11] 权巍,蔡永青,王超,宋佳,孙鸿凯,李林轩. 基于3D-ResNet双流网络的VR病评估模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1345-1353.
[12] 周欣磊,顾海挺,刘晶,许月萍,耿芳,王冲. 基于集成学习与深度学习的日供水量预测方法[J]. 浙江大学学报(工学版), 2023, 57(6): 1120-1127.
[13] 刘沛丰,钱璐,赵兴炜,陶波. 航空装配领域中命名实体识别的持续学习框架[J]. 浙江大学学报(工学版), 2023, 57(6): 1186-1194.
[14] 韩俊,袁小平,王准,陈烨. 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报(工学版), 2023, 57(6): 1224-1233.
[15] 赵嘉墀,王天琪,曾丽芳,邵雪明. 基于GRU的扑翼非定常气动特性快速预测[J]. 浙江大学学报(工学版), 2023, 57(6): 1251-1256.