机械工程 |
|
|
|
|
基于图神经网络的零件机加工特征识别方法 |
姚鑫骅( ),于涛,封森文,马梓健,栾丛丛,沈洪垚 |
浙江大学 机械工程学院,浙江省三维打印工艺与装备重点实验室,流体动力基础件与机电系统全国重点实验室,浙江 杭州 310027 |
|
Recognition method of parts machining features based on graph neural network |
Xinhua YAO( ),Tao YU,Senwen FENG,Zijian MA,Congcong LUAN,Hongyao SHEN |
School of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China |
引用本文:
姚鑫骅,于涛,封森文,马梓健,栾丛丛,沈洪垚. 基于图神经网络的零件机加工特征识别方法[J]. 浙江大学学报(工学版), 2024, 58(2): 349-359.
Xinhua YAO,Tao YU,Senwen FENG,Zijian MA,Congcong LUAN,Hongyao SHEN. Recognition method of parts machining features based on graph neural network. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 349-359.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.02.013
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I2/349
|
1 |
VANDENBRANDE J H, REQUICHA A G Spatial reasoning for the automatic recognition of machinable features in solid models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15 (12): 1269- 1285
doi: 10.1109/34.250845
|
2 |
VERMA A K, RAJOTIA S A hint-based machining feature recognition system for 2.5 D parts[J]. International Journal of Production Research, 2008, 46 (6): 1515- 1537
doi: 10.1080/00207540600919373
|
3 |
WU J, LEI R, PENG Y. Manufacturing feature recognition method based on subgraph decomposition [C]// International Conference on Frontiers of Artificial Intelligence and Machine Learning . Hangzhou: IEEE, 2022: 120–126.
|
4 |
YAN H, YAN C, YAN P, et al Manufacturing feature recognition method based on graph and minimum non-intersection feature volume suppression[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125 (11/12): 5713- 5732
|
5 |
易晗. 基于图和规则的钣金件特征识别方法研究[D]. 武汉: 华中科技大学, 2019. YI Han. Research on feature recognition method of sheet metal parts based on graphs and rules [D]. Wuhan: Huazhong University of Science and Technology, 2019.
|
6 |
WOO Y, SAKURAI H Recognition of maximal features by volume decomposition[J]. Computer-Aided Design, 2002, 34 (3): 195- 207
doi: 10.1016/S0010-4485(01)00080-X
|
7 |
ZHANG Z, JAISWAL P, RAI R Featurenet: machining feature recognition based on 3d convolution neural network[J]. Computer-Aided Design, 2018, 101: 12- 22
doi: 10.1016/j.cad.2018.03.006
|
8 |
SHI P, QI Q, QIN Y, et al A novel learning-based feature recognition method using multiple sectional view representation[J]. Journal of Intelligent Manufacturing, 2020, (31): 1291- 1309
|
9 |
MA Y, ZHANG Y, LUO X. Automatic recognition of machining features based on point cloud data using convolution neural networks [C]// Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science . Wuhan: ACM, 2019: 229-235.
|
10 |
QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3d classification and segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Hawaii: IEEE, 2017: 652-660.
|
11 |
高玉龙. 基于加工面点云数据深度学习的加工特征自动识别[D]. 大连: 大连理工大学, 2021. GAO Yulong. Automatic recognition of machining features based on deep learning for machining surface point cloud data [D]. Dalian: Dalian University of Technology, 2021.
|
12 |
YAO X, WANG D, YU T, et al A machining feature recognition approach based on hierarchical neural network for multi-feature point cloud models[J]. Journal of Intelligent Manufacturing, 2023, 34 (6): 2599- 2610
doi: 10.1007/s10845-022-01939-8
|
13 |
CAO W, ROBINSON T, HUA Y, et al. Graph representation of 3d CAD models for machining feature recognition with deep learning [C]// International Design Engineering Technical Conferences and Computers and Information in Engineering Conference . [S. 1. ]: ASME, 2020, 84003: 202-212.
|
14 |
PAGANI L, SCOTT P J Curvature based sampling of curves and surfaces[J]. Computer Aided Geometric Design, 2018, (59): 32- 48
|
15 |
胡盼旺. 复杂回转类零件自动特征识别算法研究[D]. 武汉: 华中科技大学, 2019. HU Panwang. Feature recognition based on graphs and rules for rotational parts [D]. Wuhan: Huazhong University of Science and Technology, 2019.
|
16 |
MEYER M, DESBRUN M, SCHRÖDER P, et al. Discrete differential-geometry operators for triangulated 2-manifolds [C]// Visualization and Mathematics III . [S. 1. ]: Springer-Verlag, 2003: 35-57.
|
17 |
PAULY M, GROSS M, KOBBELT L P. Efficient simplification of point-sampled surfaces [C]// I EEE Visualization . Boston: IEEE, 2002: 163-170.
|
18 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Beijing: IEEE, 2018: 7132-7141.
|
19 |
PAVIOT T. Pythonocc (7.7. 0) [EB/OL]. (2022-10-05)[2023-04-05].https://doi.org/10.5281/zenodo.3605364.
|
20 |
JAYARAMAN P K, SANGHI A, LAMBOURNE J G, et al. Uv-net: learning from boundary representations [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. [S. 1. ]: IEEE, 2021: 11703-11712.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|