计算机技术 |
|
|
|
|
混合采样下多级特征聚合的视频目标检测算法 |
秦思怡1,2( ),盖绍彦1,2,*( ),达飞鹏1,2 |
1. 东南大学 自动化学院,江苏 南京 210096 2. 东南大学 复杂工程系统测量与控制教育部重点实验室,江苏 南京 210096 |
|
Video object detection algorithm based on multi-level feature aggregation under mixed sampler |
Siyi QIN1,2( ),Shaoyan GAI1,2,*( ),Feipeng DA1,2 |
1. School of Automation, Southeast University, Nanjing 210096, China 2. Key Laboratory of Measurement and Control of Complex Engineering Systems, Ministry of Education, Southeast University, Nanjing 210096, China |
1 |
史钰祜, 张起贵 基于局部注意的快速视频目标检测方法[J]. 计算机工程, 2022, 48 (5): 314- 320 SHI Yuhu, ZHANG Qigui Method for fast video object detection based on local attention[J]. Computer Engineering, 2022, 48 (5): 314- 320
|
2 |
ZHU X, WANG Y, DAI J, et al. Flow-guided feature aggregation for video object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Venice: IEEE, 2017: 408-417.
|
3 |
ZHU X, XIONG Y, DAI J, et al. Deep feature flow for video recognition [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2349-2358.
|
4 |
FEICHTENHOFER C, PINZ A, ZISSERMAN A. Detect to track and track to detect [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Venice: IEEE, 2017: 3038-3046.
|
5 |
KANG K, LI H, YAN J, et al T-CNN: tubelets with convolutional neural networks for object detection from videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 28 (10): 2896- 2907
|
6 |
HAN M, WANG Y, CHANG X, et al. Mining inter-video proposal relations for video object detection [C]// Proceedings of the European Conference on Computer Vision. Glasgow: Springer, 2020: 431-446.
|
7 |
HE F, GAO N, JIA J, et al. QueryProp: object query propagation for high-performance video object detection [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2022, 36(1): 834-842.
|
8 |
JIAO L, ZHANG R, LIU F, et al New generation deep learning for video object detection: a survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (8): 3195- 3215
doi: 10.1109/TNNLS.2021.3053249
|
9 |
WU H, CHEN Y, WANG N, et al. Sequence level semantics aggregation for video object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9217-9225.
|
10 |
CHEN Y, CAO Y, HU H, et al. Memory enhanced global-local aggregation for video object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10337-10346.
|
11 |
JIANG Z, LIU Y, YANG C, et al. Learning where to focus for efficient video object detection [C]// Proceedings of European Conference on Computer Vision. Berlin: Springer, 2020: 18-34.
|
12 |
RUSSAKOVSKY O, DENG J, SU H, et al Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115 (3): 211- 252
doi: 10.1007/s11263-015-0816-y
|
13 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
|
14 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2016: 779-788.
|
15 |
李凯, 林宇舜, 吴晓琳, 等 基于多尺度融合与注意力机制的小目标车辆检测[J]. 浙江大学学报: 工学版, 2022, 56 (11): 2241- 2250 LI Kai, LIN Yushun, WU Xiaolin, et al Small target vehicle detection based on multi-scale fusion technology and attention mechanism[J]. Journal of ZheJiang University: Engineering Science, 2022, 56 (11): 2241- 2250
|
16 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Honolulu: IEEE, 2017: 6517–6525.
|
17 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08)[2023-07-31]. https://arxiv.org/abs/1804.02767.
|
18 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// Proceedings of the European Conference on Computer Vision. [S. l. ]: Springer, 2016: 21-37.
|
19 |
YAN B, FAN P, LEI X, et al A real-time apple targets detection method for picking robot based on improved YOLOv5[J]. Remote Sensing, 2021, 13 (9): 1619- 1627
doi: 10.3390/rs13091619
|
20 |
GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021 [EB/OL]. (2021-08-06)[2023-07-31]. https://arxiv.org/abs/2107.08430.
|
21 |
于楠晶, 范晓飚, 邓天民, 等 基于多头自注意力的复杂背景船舶检测算法[J]. 浙江大学学报: 工学版, 2022, 56 (12): 2392- 2402 YU Nanjing, FAN Xiaobiao, DENG Tianmin, et al Ship detection algorithm in complex backgrounds via multi-head self-attention[J]. Journal of ZheJiang University: Engineering Science, 2022, 56 (12): 2392- 2402
|
22 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// In Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc. , 2017: 6000–6010.
|
23 |
NEUBECK A, VAN G L. Efficient non-maximum suppression [C]// 18th International Conference on Pattern Recognition. Hong Kong: IEEE, 2006: 850-855.
|
24 |
张娜, 戚旭磊, 包晓安, 等 基于25预测定位的单阶段目标检测算法[J]. 浙江大学学报: 工学版, 2022, 56 (4): 783- 794 ZHANG Na, QI Xulei, BAO Xiaoan, et al Single-stage object detection algorithm based on optimizing position prediction[J]. Journal of ZheJiang University: Engineering Science, 2022, 56 (4): 783- 794
|
25 |
SUN G, HUA Y, HU G, et al. Mamba: multi-level aggregation via memory bank for video object detection [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2021: 2620-2627.
|
26 |
WANG H, TANG J, LIU X, et al. PTSEFormer: progressive temporal-spatial enhanced TransFormer towards video object detection [C]// Proceedings of the European Conference on Computer Vision. Tel Aviv: Springer, 2022: 732-747.
|
27 |
EFRAIMIDIS P S, SPIRAKIS P G Weighted random sampling with a reservoir[J]. Information Processing Letters, 2006, 97 (5): 181- 185
doi: 10.1016/j.ipl.2005.11.003
|
28 |
TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks [C]// International Conference on Machine Learning. Long Beach: [s. n.], 2019: 6105-6114.
|
29 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2020: 12993-13000.
|
30 |
KIM J, KOH J, LEE B, et al. Video object detection using object's motion context and spatio-temporal feature aggregation [C]// 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 1604-1610.
|
31 |
蔡强, 李韩玉, 李楠, 等 基于时序信息和注意力机制的视频目标检测[J]. 计算机仿真, 2021, 38 (12): 380- 385 CAI Qiang, LI Hanyu, LI Nan, et al Video object detection with temporal information and attention mechanism[J]. Computer Simulation, 2021, 38 (12): 380- 385
doi: 10.3969/j.issn.1006-9348.2021.12.078
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|