计算机技术、自动化技术 |
|
|
|
|
基于自注意力机制的双分支密集人群计数算法 |
杨天乐(),李玲霞,张为*() |
天津大学 微电子学院,天津 300072 |
|
Dual-branch crowd counting algorithm based on self-attention mechanism |
Tian-le YANG(),Ling-xia LI,Wei ZHANG*() |
School of Microelectronics, Tianjin University, Tianjin 300072, China |
1 |
MA Y, SHUAI H, CHENG W Spatiotemporal dilated convolution with uncertain matching for video-based crowd estimation[J]. IEEE Transactions on Multimedia, 2022, 24: 261- 273
doi: 10.1109/TMM.2021.3050059
|
2 |
李萌, 孙艳歌, 郭华平, 等 多层次融合与注意力机制的人群计数算法[J]. 吉林大学学报: 信息科学版, 2022, 40 (6): 1009- 1016 LI Meng, SUN Yan-ge, GUO Hua-ping, et al Multi-level fusion and attention mechanism based crowd counting algorithm[J]. Journal of Jilin University: Information Science Edition, 2022, 40 (6): 1009- 1016
|
3 |
LIAN D, CHEN X, LI J, et al Locating and counting heads in crowds with a depth prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (12): 9056- 9072
doi: 10.1109/TPAMI.2021.3124956
|
4 |
LU H, CAO Z, XIAO Y, et al TasselNet: counting maize tassels in the wild via local counts regression network[J]. Plant Methods, 2017, 13 (1): 1- 17
doi: 10.1186/s13007-016-0152-4
|
5 |
XIE W, NOBLE J A, ZISSERMAN A Microscopy cell counting and detection with fully convolutional regression networks[J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6 (3): 283- 292
doi: 10.1080/21681163.2016.1149104
|
6 |
LIANG M, HUANG X, CHEN C, et al Counting and classification of highway vehicles by regression analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16: 2878- 2888
doi: 10.1109/TITS.2015.2424917
|
7 |
ZENG C, MA H. Robust Head-shoulder detection by PCA-based multilevel HOG-LBP detector for people counting [C]// 20th International Conference on Pattern Recognition. Istanbul: IEEE, 2010: 2069-2072.
|
8 |
LI M, ZHANG Z, HUANG K, et al. Estimating the number of people in crowded scenes by MID based foreground segmentation and head-shoulder detection [C]// 19th International Conference on Pattern Recognition. Tampa: IEEE, 2008: 1-4.
|
9 |
刘迪, 郭继昌, 汪昱东, 等 融合注意力机制的多尺度显著性目标检测网络[J]. 西安电子科技大学学报: 自然科学版, 2022, 49 (4): 118- 126 LIU Di, GUO Ji-chang, WANG Yu-dong, et al Multi-scale salient object detection network combining an attention mechanism[J]. Journal of Xidian University: Natural Science, 2022, 49 (4): 118- 126
|
10 |
LEMPITSKY V, ZISSERMAN A Learning to count objects in images[J]. Advances in Neural Information Processing Systems, 2010, 23: 1324- 1332
|
11 |
ZHANG Y, ZHOU D, CHEN S, et al. Single-image crowd counting via multi-column convolutional neural network [C]// Proceedings of the lEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 589-597.
|
12 |
万洪林, 王晓敏, 彭振伟, 等 基于新型多尺度注意力机制的密集人群计数算法[J]. 电子与信息学报, 2022, 44 (3): 1129- 1136 WAN Hong-lin, WANG Xiao-min, PENG Zhen-wei, et al Dense crowd counting algorithm based on new multi-scale attention mechanism[J]. Journal of Electronics and Information Technology, 2022, 44 (3): 1129- 1136
doi: 10.11999/JEIT210163
|
13 |
LIU J, GAO C, MENG D, et al. DecideNet: counting varying density crowds through attention guided detection and density estimation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5197-5206.
|
14 |
XIE J, PANG C, ZHENG Y, et al Multi-scale attention Recalibration Network for crowd counting[J]. Applied Soft Computing, 2022, 117: 108457
doi: 10.1016/j.asoc.2022.108457
|
15 |
LEI Y, LIU Y, ZHANG P, et al Towards using count-level weak supervision for crowd counting[J]. Pattern Recognition, 2021, 109: 107616
doi: 10.1016/j.patcog.2020.107616
|
16 |
LIANG D, CHEN X, XU W, et al TransCrowd: weakly-supervised crowd counting with transformer[J]. Science China: Information Sciences, 2022, 65 (6): 48- 61
|
17 |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 10012-10022.
|
18 |
CHEN X, WANG X, ZHOU J, et al. Activating more pixels in image super-resolution transformer [EB/OL]. [2022-05-09]. https://arxiv.org/abs/2205.04437.pdf.
|
19 |
WANG B, LIU H, SAMARAS D, et al. Distribution matching for crowd counting [C]// Proceedings of the Advances in Neural Information Processing Systems. Vancouver: CA, 2020: 1595-1607.
|
20 |
CHAO X, SHANG W, ZHANG F Information-guided flame detection based on faster R-CNN[J]. IEEE Access, 2020, 8: 58923- 58932
doi: 10.1109/ACCESS.2020.2982994
|
21 |
IDRESS H, TAYYAB M, ATHREY K, et al. Composition loss for counting, density map estimation and localization in dense crowds [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 532-546.
|
22 |
IDRESS H, SALEEMI I, SEIBERT C, et al. Multi-source multi-scale counting in extremely dense crowd images [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 2547-2554.
|
23 |
SINDAGI V A, YASARLA R, PATEL V M Jhu-crowd++: large-scale crowd counting dataset and a benchmark method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, (4): 653- 671
|
24 |
LI Y, ZHANG X, CHEN D. Csrnet: dilated convolutional neural networks for understanding the highly congested scenes [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt lake city: IEEE, 2018: 1091-1100.
|
25 |
MA Z, WEI X, HONG X, et al. Bayesian loss for crowd count estimation with point supervision [C]// IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6141-6150.
|
26 |
WAN J, LIU Z, CHAN A. A generalized loss function for crowd counting and localization [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 1974-1983.
|
27 |
LIANG D, XU W, ZHU Y, et al. Focal inverse distance transform maps for crowd localization [EB/OL]. [2021-10-20]. https://arxiv.org/pdf/2102.07925.pdf.
|
28 |
LIANG D, XU W, BAI X. An end-to-end transformer model for crowd localization [C]// Proceedings of the European Conference on Computer Vision. Cham: Springer, 2022: 38-54.
|
29 |
ZHONG X, YAN Z, QIN J, et al An improved normed-deformable convolution for crowd counting[J]. IEEE Signal Process Letters, 2022, 29: 1794- 1798
doi: 10.1109/LSP.2022.3198371
|
30 |
GAO X, XIE J, CHEN Z, et al Dilated convolution based feature refinement network for crowd localization[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2023, 19 (6): 1- 16
|
31 |
WANG Q, BRECKON T Crowd counting via segmentation guided attention networks and curriculum loss[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9): 15233- 43
doi: 10.1109/TITS.2021.3138896
|
32 |
CHEN Y, YANG J, ZHANG D, et al Region-aware network: model human’s top-down visual perception mechanism for crowd counting[J]. Neural Networks, 2022, 148: 219- 231
doi: 10.1016/j.neunet.2022.01.015
|
33 |
ZENG X, HU S, WANG H, et al. Joint contextual transformer and multi-scale information shared network for crowd counting [C]// 5th International Conference on Pattern Recognition and Artificial Intelligence. Chengdu: IEEE, 2022: 412-417.
|
34 |
YANG Y, WU Z, SU L, et al. Weakly-supervised crowd counting learns from sorting rather than locations [C]// Proceedings of European Conference on Computer Vision. Newcastle: Springer, 2020: 1-17.
|
35 |
PHUCT P. Attention in crowd counting using the transformer and density map to improve counting result [C]// 8th Nafosted Conference on Information and Computer Science. Hanoi: IEEE, 2021: 65-70.
|
36 |
LI B, ZHANG Y, XU H, et al CCST: crowd counting with swin transformer[J]. The Visual Computer, 2023, 39 (7): 2671- 2682
doi: 10.1007/s00371-022-02485-3
|
37 |
RONG L, LI C. Coarse and fine-grained attention network with background-aware loss for crowd density map estimation [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 3675-3684.
|
38 |
LIU W, SALZMANN M, FUA P. Context-aware crowd counting [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5094-5103.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|