计算机技术、自动化技术 |
|
|
|
|
注意力聚集无锚框的孪生网络无人机跟踪算法 |
王海军1(),马文来2,张圣燕1 |
1. 滨州学院 山东省高校航空信息与控制重点实验室,山东 滨州 256603 2. 南京航空航天大学 民航学院,江苏 南京 211106 |
|
Attention aggregation siamese network with anchor free scheme for UAV object tracking |
Hai-jun WANG1(),Wen-lai MA2,Sheng-yan ZHANG1 |
1. Key Laboratory of Aviation Information and Control in University of Shandong, Binzhou University, Binzhou 256603, China 2. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China |
1 |
CHEN X, YAN B, ZHU J, et al. Transformer tracking[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 8122-8131.
|
2 |
孙锐, 方林凤, 梁启丽, 等 孪生网络框架下融合显著性和干扰在线学习的航拍目标跟踪算法[J]. 电子与信息学报, 2021, 43 (5): 1414- 1423 SUN Rui, FANG Lin-feng, LIANG Qi-li, et al Siamese network combined learning saliency and online leaning interference for aerial object tracking algorithm[J]. Journal of Electronics and Information Technology, 2021, 43 (5): 1414- 1423
doi: 10.11999/JEIT200140
|
3 |
王海军, 张圣燕, 杜玉杰 响应和滤波器偏差感知约束的无人机目标跟踪算法[J]. 浙江大学学报: 工学版, 2022, 56 (9): 1824- 1832 WANG Hai-jun, ZHANG Sheng-yan, DU Yu-jie UAV object tracking algorithm based on response and filter deviation-aware regularization[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (9): 1824- 1832
|
4 |
刘芳, 王洪娟, 黄光伟, 等 基于自适应深度网络的无人机目标跟踪算法[J]. 航空学报, 2019, 40 (3): 322332 LIU Fang, WANG Hong-juan, HUANG Guang-wei, et al UAV target tracking algorithm based on adaptive depth network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40 (3): 322332
|
5 |
BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 2544-2550.
|
6 |
HENRIQUES J F, CASEIRO R, MARTINS P, et al High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596
doi: 10.1109/TPAMI.2014.2345390
|
7 |
HUANG Z, FU C, LI Y, et al. Learning aberrance repressed correlation filters for real-time UAV tracking [C]// IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 2891-2900.
|
8 |
LI Y, FU C, DING F, et al. Auto track: towards high-performance visual tracking for UAV with automatic spatio-temporal regularization [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11920-11929.
|
9 |
LIN F, FU C, HE Y, et al. BiCF: learning bidirectional incongruity-aware correlation filter for efficient UAV object tracking [C]// IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 2365-2371.
|
10 |
BERTINETTO L, VALMADRE J, HENRIQUES J, et al. Fully-convolutional siamese networks for object tracking [C]// Computer Vision–ECCV Workshops. Amsterdam: Springer, 2016: 850-865.
|
11 |
LI B, YAN J, WU W, et al. High performance visual tracking with siamese region proposal network [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8971-8980.
|
12 |
LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4277-4286.
|
13 |
XU Y, WANG Z, LI Z, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines [C]// Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12549-12556.
|
14 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
|
15 |
RAHMAN M M, FIAZ M, JUNG S K Efficient visual tracking with stacked channel-spatial attention learning[J]. IEEE Access, 2020, 8: 100857- 100869
doi: 10.1109/ACCESS.2020.2997917
|
16 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Computer Vision–ECCV. Munich: Springer, 2018: 3-19.
|
17 |
FU J, LIU J, LI Y, et al. Dual attention network for scene segmentation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3141-3149.
|
18 |
LIN T, MAIRE M, BELONGIE S, et al. Microsoft Coco: common objects in context [C]// Computer Vision- ECCV. Zurich: Springer, 2014: 740-755.
|
19 |
RUSSAKOVSKY O, DENG J, SU H, et al ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115: 211- 252
doi: 10.1007/s11263-015-0816-y
|
20 |
HUANG L, ZHAO X, HUANG K, GOT-10k: a large high-diversity benchmark for generic object tracking in the wild [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1562-1577.
|
21 |
REAL E, SHLENS J, MAZZOCCHI S, et al. Youtube -bounding boxes: a large high-precision human-annotated data set for object detection in video [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 7464-7473.
|
22 |
MUELLER M, SMITH N, GHANEM B, et al. A benchmark and simulator for UAV tracking [C]// Computer Vision–ECCV. Amsterdam: Springer, 2016: 445-461.
|
23 |
LI, S, YEUNG D. Visual object tracking for unmanned aerial vehicles: a benchmark and new motion models [C]// Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017: 4140-4146.
|
24 |
FU C, CAO Z, LI Y, et al. Siamese anchor proposal network for high-speed aerial tracking [C]// IEEE International Conference on Robotics and Automation. Xi’an: IEEE, 2021: 510-516.
|
25 |
DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking [C]// IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 6931-6939.
|
26 |
WANG N, ZHOU W G, TIAN Q, et al. Multi-cue correlation filters for robust visual tracking [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4844-4853.
|
27 |
LI F, TIAN C, ZUO W M, et al. Learning spatial-temporal regularized correlation filters for visual tracking [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4904-4913.
|
28 |
ZHANG Z, PENG H, FU J, et al. Ocean: object-aware anchor-free tracking [C]// Computer Vision-ECCV. Glasgow: Springer, 2020: 771-787.
|
29 |
SOSNOVIK I, MOSKALEV A, SMEULDERS A. Scale equivariance improves siamese tracking [C]// IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 2764-2773.
|
30 |
WANG N, ZHOU W, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN: IEEE, 2021: 1571-1580.
|
31 |
CHEN X, KANG B, WANG D, et al. Efficient visual tracking via hierarchical cross-attention transformer [EB/OL]. [2022-10-29]. https://arxiv.org/abs/ 2203.13537.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|