Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (4): 711-717    DOI: 10.3785/j.issn.1008-973X.2022.04.010
计算机技术、信息工程     
基于改进MSCKF的无人机室内定位方法
王思鹏(),杜昌平*(),宋广华,郑耀
浙江大学 航空航天学院,浙江 杭州 310027
Indoor positioning method of UAV based on improved MSCKF algorithm
Si-peng WANG(),Chang-ping DU*(),Guang-hua SONG,Yao ZHENG
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(992 KB)   HTML
摘要:

针对无人机室内定位容易出现漂移的问题,提出基于改进多状态约束卡尔曼滤波器(MSCKF)的无人机(UAV)室内定位方法. 该方法在MSCKF的框架下,提出高鲁棒性、低时延的标志点检测方法. 利用在世界坐标系下坐标已知的标志点计算得到无人机位姿,实现惯性测量单元(IMU)信息与单目视觉信息融合以及无人机位姿修正. 对提出的定位方法进行测试. 测试结果表明,该方法的定位误差小于0.266 m,与OpenVins和LARVIO开源算法相比,定位精度提高了54.6%以上.

关键词: 无人机(UAV)室内定位卡尔曼滤波器标志点检测位姿修正    
Abstract:

An indoor positioning method of unmanned aerial vehicle (UAV) based on improved multi-state constraint Kalman filter (MSCKF) was proposed aiming at the problem that the indoor positioning of UAV is prone to drift. A high robustness and low delay detection method was proposed under the framework of MSCKF. The pose of UAV was calculated with the help of the known positions of the mark points in world coordinate system. Then inertial measurement unit (IMU) data and monocular vision data fusion and UAV pose correction were realized. The proposed positioning method was tested. The simulation results show that the positioning error of the proposed method was within 0.266 m, and the positioning accuracy was improved by more than 54.6% compared to OpenVins and LARVIO.

Key words: unmanned aerial vehicle (UAV)    indoor positioning    Kalman filter    mark detection    pose correction
收稿日期: 2021-05-20 出版日期: 2022-04-24
CLC:  TP 242  
基金资助: 装备预研教育部联合基金资助项目(6141A02011803)
通讯作者: 杜昌平     E-mail: wangsipeng@zju.edu.cn;duchangping@zju.edu.cn
作者简介: 王思鹏(1997—),男,硕士生,从事飞行器路径规划与定位的研究. orcid.org/0000-0003-4387-0279. E-mail: wangsipeng@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王思鹏
杜昌平
宋广华
郑耀

引用本文:

王思鹏,杜昌平,宋广华,郑耀. 基于改进MSCKF的无人机室内定位方法[J]. 浙江大学学报(工学版), 2022, 56(4): 711-717.

Si-peng WANG,Chang-ping DU,Guang-hua SONG,Yao ZHENG. Indoor positioning method of UAV based on improved MSCKF algorithm. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 711-717.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.04.010        https://www.zjujournals.com/eng/CN/Y2022/V56/I4/711

图 1  定位算法的整体框图
图 2  标志点检测流程
图 3  定位算法的性能测试环境
图 4  轨迹1与轨迹2的定位图
图 5  路径1的误差比较
算法 误差/m
轨迹1 轨迹2
本文算法 0.226 0.266
OpenVins 0.498 0.644
LARVIO 0.575
表 1  2条轨迹下3种算法的定位误差
图 6  路径2的误差比较
算法 td/ms
本文算法 7.92
OpenVins 2.67
文献[13]算法 >22.22
表 2  各定位算法的实时性分析
1 USENKO V, ENGEL J, STÜCKLER J, et al. Direct visual-inertial odometry with stereo cameras [C]// 2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 1885-1892.
2 MUR-ARTAL R, TARDóS J D Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2 (2): 796- 803
doi: 10.1109/LRA.2017.2653359
3 MUR-ARTAL R, MONTIEL J M M, TARDOS J D ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31 (5): 1147- 1163
doi: 10.1109/TRO.2015.2463671
4 MUR-ARTAL R, TARDóS J D Orb-slam2: an open-source slam system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33 (5): 1255- 1262
doi: 10.1109/TRO.2017.2705103
5 CASTELLANOS J A, NEIRA J, JD T Limits to the consistency of EKF-based SLAM[J]. IFAC Proceedings Volumes, 2004, 37 (8): 716- 721
doi: 10.1016/S1474-6670(17)32063-3
6 MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation [C]// Proceedings of 2007 IEEE International Conference on Robotics and Automation. Roma: IEEE, 2007: 3565-3572.
7 SUN K, MOHTA K, PFROMMER B, et al Robust stereo visual inertial odometry for fast autonomous flight[J]. IEEE Robotics and Automation Letters, 2018, 3 (2): 965- 972
doi: 10.1109/LRA.2018.2793349
8 GENEVA P, ECKENHOFF K, LEE W, et al. Openvins: a research platform for visual-inertial estimation [C]// 2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 4666-4672.
9 QIU X, ZHANG H, FU W Lightweight hybrid visual-inertial odometry with closed-form zero velocity update[J]. Chinese Journal of Aeronautics, 2020, 33 (12): 3344- 3359
doi: 10.1016/j.cja.2020.03.008
10 HUAI Z, HUANG G. Robocentric visual-inertial odometry [C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 6319-6326.
11 MA F, SHI J, YANG Y, et al ACK-MSCKF: tightly-coupled Ackermann multi-state constraint Kalman filter for autonomous vehicle localization[J]. Sensors, 2019, 19 (21): 4816
doi: 10.3390/s19214816
12 ZHENG F, TSAI G, ZHANG Z, et al. Trifo-VIO: robust and efficient stereo visual inertial odometry using points and lines [C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 3686-3693.
13 BAVLE H, MANTHE S, DE L P P, et al. Stereo visual odometry and semantics based localization of aerial robots in indoor environments [C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 1018-1023.
14 LEVINSON J, MONTEMERLO M, THRUN S. Map-based precision vehicle localization in urban environments [C]// Robotics: Science and Systems. Atlanta: [s. n.], 2007: 1.
15 LEVINSON J, THRUN S. Robust vehicle localization in urban environments using probabilistic maps [C]// 2010 IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 4372-4378.
16 QIN T, LI P, SHEN S Vins-mono: a robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34 (4): 1004- 1020
doi: 10.1109/TRO.2018.2853729
17 QIN T, SHEN S. Online temporal calibration for monocular visual-inertial systems [C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 3662-3669.
18 徐晓苏, 代维, 杨博, 等 室内环境下基于图优化的视觉惯性SLAM方法[J]. 中国惯性技术学报, 2017, 25 (3): 313- 319
XU Xiao-su, DAI Wei, YANG Bo, et al Visual-aid inertial SLAM method based on graph optimization in indoor[J]. Journal of Chinese Inertial Technology, 2017, 25 (3): 313- 319
19 HARRIS C G, STEPHENS M. A combined corner and edge detector [C]// Alvey Vision Conference. Manchester: [s. n.], 1988: 10-5244.
[1] 伍川辉,廖家,熊仕勇,牛英杰,周博. 基于激光传感器的槽型轨轮廓匹配方法[J]. 浙江大学学报(工学版), 2021, 55(9): 1607-1614.
[2] 王思孝,赵文军,张浩,高永,李普森. 基于微分跟踪器的共轴反桨无人机串级TD-PID控制算法[J]. 浙江大学学报(工学版), 2021, 55(12): 2359-2364.
[3] 席志鹏,楼卓,李晓霞,孙艳,杨强,颜文俊. 集中式光伏电站巡检无人机视觉定位与导航[J]. 浙江大学学报(工学版), 2019, 53(5): 880-888.
[4] 黄吉羊,孟濬,张燃. 基于特征光源的三维室内定位技术[J]. 浙江大学学报(工学版), 2016, 50(7): 1393-1401.
[5] 杨慧琳, 黄智刚, 刘久文, 杜元锋. 基于核模糊C均值指纹库管理的WIFI室内定位方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1126-1133.
[6] 朱光明, 蒋荣欣, 周凡, 田翔, 陈耀武. 带测量偏置估计的鲁棒卡尔曼滤波算法[J]. 浙江大学学报(工学版), 2015, 49(7): 1343-1349.
[7] 田华, 赵文杰, 方舟, 李平.
基于能量管理的无人机无动力着陆引导策略
[J]. 浙江大学学报(工学版), 2015, 49(10): 1999-2004.
[8] 陆国生,李立言,赵民建. 全球导航卫星系统矢量载波环的设计与分析[J]. 浙江大学学报(工学版), 2015, 49(1): 20-26.
[9] 孟捷 ,刘华锋 ,岳茂雄 ,胡红杰. 生物力学模型导引的心肌运动与材料参数对偶估计[J]. J4, 2012, 46(5): 912-917.
[10] 陈少斌, 蒋静坪. 四轮移动机器人轨迹跟踪的最优状态反馈控制[J]. J4, 2009, 43(12): 2186-2190.