计算机技术 |
|
|
|
|
融合知识图谱的推荐系统研究进展 |
王慧欣( ),童向荣*( ) |
烟台大学 计算机与控制工程学院,山东 烟台 264005 |
|
Research progress of recommendation system based on knowledge graph |
Hui-xin WANG( ),Xiang-rong TONG*( ) |
School of Computer and Control Engineering, Yantai University, Yantai 264005, China |
1 |
AL-KUMAIM N H, HASSAN S H, SHABBIR M S, et al Exploring the inescapable suffering among postgraduate researchers: information overload perceptions and implications for future research[J]. International Journal of Information and Communication Technology Education (IJICTE), 2021, 17 (1): 19- 41
doi: 10.4018/IJICTE.2021010102
|
2 |
THOMPSON P Finding out about: a cognitive perspective on search engine technology and the WWW[J]. Information Retrieval, 2002, 5 (2/3): 269- 271
|
3 |
HUI B, ZHANG L, ZHOU X, et al Personalized recommendation system based on knowledge embedding and historical behavior[J]. Applied Intelligence, 2022, 52 (1): 954- 966
doi: 10.1007/s10489-021-02363-w
|
4 |
ADOMAVICIUS G, TUZHILIN A Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17 (6): 734- 749
doi: 10.1109/TKDE.2005.99
|
5 |
SU X, KHOSHGOFTAAR T M A survey of collaborative filtering techniques[J]. Advances in Artificial Intelligence, 2009, (12): 1- 19
|
6 |
KWON Y, LEE Y, RHU M, et al. Tensor casting: co-designing algorithm-architecture for personalized recommendation training[C]// 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). Seoul: IEEE, 2021: 235-248.
|
7 |
CHEN Y, DAI Y, HAN X, et al Dig users’ intentions via attention flow network for personalized recommendation[J]. Information Sciences, 2021, 547: 1122- 1135
doi: 10.1016/j.ins.2020.09.007
|
8 |
SHEPITSEN A, GEMMELL J, MOBASHER B, et al. Personalized recommendation in social tagging systems using hierarchical clustering[C]// Proceedings of the 2008 ACM Conference on Recommender Systems. Lausanne: ACM, 2008: 259-266.
|
9 |
GUO G. Integrating trust and similarity to ameliorate the data sparsity and cold start for recommender systems[C]// Proceedings of the 7th ACM Conference on Recommender Systems. Hong Kong: ACM, 2013: 451-454.
|
10 |
HAWKINS D M The problem of overfitting[J]. Journal of Chemical Information and Computer Sciences, 2004, 44 (1): 1- 12
doi: 10.1021/ci0342472
|
11 |
CAO Y, WANG X, HE X, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]// The World Wide Web Conference. San Francisco: WWW, 2019: 151-161.
|
12 |
LI Z, LIU H, ZHANG Z, et al. Learning knowledge graph embedding with heterogeneous relation attention networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(8):3961-3973.
|
13 |
XIE L, HU Z, CAI X, et al Explainable recommendation based on knowledge graph and multi-objective optimization[J]. Complex and Intelligent Systems, 2021, 7 (3): 1241- 1252
doi: 10.1007/s40747-021-00315-y
|
14 |
LIN J, ZHAO Y, HUANG W, et al Domain knowledge graph-based research progress of knowledge representation[J]. Neural Computing and Applications, 2021, 33 (2): 681- 690
doi: 10.1007/s00521-020-05057-5
|
15 |
SU X, KHOSHGOFTAAR T M. A survey of collaborative filtering techniques[J]. Advances in Artificial Intelligence, 2009, 4: 1-19.
|
16 |
HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Perth: WWW, 2017: 173-182.
|
17 |
KONSTAN J A, MILLER B N, MALTZ D, et al Grouplens: applying collaborative filtering to usenet news[J]. Communications of the ACM, 1997, 40 (3): 77- 87
doi: 10.1145/245108.245126
|
18 |
SCHAFER J B, FRANKOWSKI D, HERLOCKER J, et al. Collaborative filtering recommender systems[J]. The Adaptive Web: Methods and Strategies of Web Personalization, 2007: 291-324.
|
19 |
SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web. Hong Kong: WWW, 2001: 285-295.
|
20 |
KOREN Y, RENDLE S, BELL R. Advances in collaborative filtering [EB/OL]. [2021-11-22]. https://link.springer.com/chapter/10.1007/978-1-0716-2197-4_3.
|
21 |
WANG F, ZHU H, SRIVASTAVA G, et al Robust collaborative filtering recommendation with user-item-trust records[J]. IEEE Transactions on Computational Social Systems, 2021, 9 (4): 986- 996
|
22 |
PAZZANI M J, BILLSUS D. Content-based recommendation systems[M]. The adaptive web: methods and strategies of web personalization. Berlin: Springer, 2007: 325-341.
|
23 |
THORAT P B, GOUDAR R M, BARVE S Survey on collaborative filtering, content-based filtering and hybrid recommendation system[J]. International Journal of Computer Applications, 2015, 110 (4): 31- 36
doi: 10.5120/19308-0760
|
24 |
DEBNATH S, GANGULY N, MITRA P. Feature weighting in content based recommendation system using social network analysis[C]// Proceedings of the 17th International Conference on World Wide Web. Beijing: WWW, 2008: 1041-1042.
|
25 |
WU L, HE X, WANG X, et al. A survey on neural recommendation: from collaborative filtering to content and context enriched recommendation [EB/OL]. [2021-12-27]. https://arxiv.org/abs/2104.13030v2.
|
26 |
LOPS P, JANNACH D, MUSTO C, et al Trends in content-based recommendation[J]. User Modeling and User-Adapted Interaction, 2019, 29 (2): 239- 249
doi: 10.1007/s11257-019-09231-w
|
27 |
KARN A L, KARNA R K, KONDAMUDI B R, et al Customer centric hybrid recommendation system for E-Commerce applications by integrating hybrid sentiment analysis[J]. Electronic Commerce Research, 2023, 23 (1): 279- 314
|
28 |
JUNG K Y, LEE J H User preference mining through hybrid collaborative filtering and content-based filtering in recommendation system[J]. Ieice Transactions on Information and Systems, 2004, 87 (12): 2781- 2790
|
29 |
DUONG T N, DO T G, DOAN N N, et al. Hybrid similarity matrix in neighborhood-based recommendation system[C]// 2021 8th NAFOSTED Conference on Information and Computer Science (NICS). Hanoi: IEEE, 2021: 475-480.
|
30 |
GUO Y, WANG M, LI X. An interactive personalized recommendation system using the hybrid algorithm model [EB/OL]. [2017-03-13]. https://www.mdpi.com/2073-8994/9/10/216.
|
31 |
NILASHI M, BIN IBRAHIM O, ITHNIN N Hybrid recommendation approaches for multi-criteria collaborative filtering[J]. Expert Systems with Applications, 2014, 41 (8): 3879- 3900
doi: 10.1016/j.eswa.2013.12.023
|
32 |
SONG Y, LIU S, JI W. Research on personalized hybrid recommendation system[C]// 2017 International Conference on Computer, Information and Telecommunication Systems (CITS). Dalian: IEEE, 2017: 133-137.
|
33 |
YING H, CHEN L, XIONG Y, et al. Collaborative deep ranking: a hybrid pair-wise recommendation algorithm with implicit feedback[C]// Pacific-asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2016: 555-567.
|
34 |
SINGHAL A, SINHA P, PANT R. Use of deep learning in modern recommendation system: a summary of recent works [EB/OL]. [2017-12-20]. https://arxiv.org/abs/1712.07525.
|
35 |
DEGENNE A, FORSÉ M. Introducing social networks[M]. Sage: Thousand Oaks, 1999.
|
36 |
KONG X, SHI Y, YU S, et al Academic social networks: modeling, analysis, mining and applications[J]. Journal of Network and Computer Applications, 2019, 132: 86- 103
doi: 10.1016/j.jnca.2019.01.029
|
37 |
王立才, 孟祥武, 张玉洁 上下文感知推荐系统[J]. 软件学报, 2012, 23 (1): 1- 20 WANG Li-cai, MENG Xiang-wu, ZHANG Yu-jie Context-aware recommender systems[J]. Journal of Software, 2012, 23 (1): 1- 20
|
38 |
GAO Q, MA P. Graph neural network and context-aware based user behavior prediction and recommendation system research [EB/OL]. [2020-11-30]. https://www.hindawi.com/journals/cin/2020/8812370/.
|
39 |
陈克寒, 韩盼盼, 吴健 基于用户聚类的异构社交网络推荐算法[J]. 计算机学报, 2013, 36 (2): 349- 359 CHEN Ke-han, HAN Pan-pan, WU Jian User clustering based social network recommendation[J]. Chinese Journal of Computers, 2013, 36 (2): 349- 359
|
40 |
SHARMA L, GERA A A survey of recommendation system: research challenges[J]. International Journal of Engineering Trends and Technology (IJETT), 2013, 4 (5): 1989- 1992
|
41 |
WALTER F E, BATTISTON S, SCHWEITZER F A model of a trust-based recommendation system on a social network[J]. Autonomous Agents and Multi-Agent Systems, 2008, 16 (1): 57- 74
doi: 10.1007/s10458-007-9021-x
|
42 |
童向荣, 张伟, 龙宇. Agent主观信任的传递性[J]. 软件学报, 2012, 23(11): 2862-2870. TONG Xiang-rong, ZHANG Wei, LONG Yu. Transitivity of agent subjective trust [J]. Journal of Software, 2012, 23 (11): 2862-2870.
|
43 |
WANG H, ZHANG F, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]// The World Wide Web Conference. San Francisco: WWW, 2019: 2000-2010.
|
44 |
GUO Q, ZHUANG F, QIN C, et al A survey on knowledge graph-based recommender systems[J]. Scientia Sinica Informationis, 2020, 34 (8): 3549- 3568
|
45 |
SHA X, SUN Z, ZHANG J. Hierarchical attentive knowledge graph embedding for personalized recommendation [EB/OL]. [2021-07-08]. https://www.sciencedirect.com/science/article/abs/pii/S1567422321000430.
|
46 |
QIN C, ZHU H, ZHUANG F, et al A survey on knowledge graph-based recommender systems[J]. Scientia Sinica Informationis, 2020, 50 (7): 937- 956
doi: 10.1360/SSI-2019-0274
|
47 |
MEZNI H, BENSLIMANE D, BELLATRECHE L Context-aware service recommendation based on knowledge graph embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 34 (11): 5225- 5238
|
48 |
KHAN N, MA Z, ULLAH A, et al Categorization of knowledge graph based recommendation methods and benchmark datasets from the perspectives of application scenarios: a comprehensive survey[J]. Expert Systems with Applications, 2023, 13 (2): 117737
|
49 |
ZHANG X, XIN X, LI D, et al. Variational reasoning over incomplete knowledge graphs for conversational recommendation [C]// Proceedings of the 16th ACM International Conference on Web Search and Data Mining. Birmingham: ACM, 2023: 231-239.
|
50 |
HU B, YE Y, ZHONG Y, et al TransMKR: translation-based knowledge graph enhanced multi-task point-of-interest recommendation[J]. Neurocomputing, 2022, 474: 107- 114
doi: 10.1016/j.neucom.2021.11.049
|
51 |
赵廷廷, 王喆, 卢奕南. 基于传播概率矩阵的异构信息网络表示学习[J]. 浙江大学学报: 工学版, 2019, 53(3): 548-554. ZHAO Ting-ting, WANG Zhe, LU Yi-nan. Heterogeneous information network representation learning based on transition probability matrix (HINtpm)[J]. Journal of Zhejiang University: Engineering Science, 2019, 53(3): 548-554.
|
52 |
WANG X, JI H, SHI C, et al. Heterogeneous graph attention network[C]// The World Wide Web Conference. San Francisco: WWW, 2019: 2022-2032.
|
53 |
XIAN Y, FU Z, MUTHUKRISHNAN S, et al. Reinforcement knowledge graph reasoning for explainable recommendation[C]// Proceedings of the 42nd International Acm Sigir Conference on Research and Development in Information Retrieval. Paris: ACM, 2019: 285-294.
|
54 |
CATHERINE R, MAZAITIS K, ESKENAZI M, et al. Explainable entity-based recommendations with knowledge graphs. [EB/OL]. [2017-07-12]. https://arxiv.org/abs/1707.05254.
|
55 |
CAO Z, XU Q, YANG Z, et al. Geometry interaction knowledge graph embeddings [C]// AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2022: 5521-5529.
|
56 |
SHI C, LI Y, ZHANG J, et al A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 29 (1): 17- 37
|
57 |
CELLUCCI C J, ALBANO A M, RAPP P E Comparative study of embedding methods[J]. Physical Review E, 2003, 67 (6): 066210
doi: 10.1103/PhysRevE.67.066210
|
58 |
WANG D, CUI P, ZHU W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: KDD, 2016: 1225-1234.
|
59 |
GONZÁLEZ L, HOGAN A. Modelling dynamics in semantic web knowledge graphs with formal concept analysis[C]// Proceedings of the 2018 World Wide Web Conference. Lyon: WWW, 2018: 1175-1184.
|
60 |
BONATTI P A, DECKER S, POLLERES A, et al. Knowledge graphs: new directions for knowledge representation on the semantic web (Dagstuhl seminar 18371)[C]// Dagstuhl Reports. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. Wadern: [s. n. ], 2019, 8(9).
|
61 |
ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: KDD, 2016: 353-362.
|
62 |
CHEN X, ZHANG Y, QIN Z. Dynamic explainable recommendation based on neural attentive models[C]// Proceedings of the AAAI Conference on Artificial Intelligence. London: AAAI, 2019: 53-60.
|
63 |
HUANG J, ZHAO W X, DOU H, et al. Improving sequential recommendation with knowledge-enhanced memory networks[C]// The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. Michigan: SIGIR, 2018: 505-514.
|
64 |
WANG X, WANG D, XU C, et al. Explainable reasoning over knowledge graphs for recommendation[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019, 33(1): 5329-5336.
|
65 |
CHEN H, LI Y, SUN X, et al. Temporal meta-path guided explainable recommendation[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. Virtual: KDD, 2021: 1056-1064.
|
66 |
ZHAO H, YAO Q, LI J, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax: KDD, 2017: 635-644.
|
67 |
SONG W, DUAN Z, YANG Z, et al. Explainable knowledge graph-based recommendation via deep reinforcement learning[EB/OL]. [2017-07-12]. https://arxiv.org/abs/1707.05254.
|
68 |
WANG X, LIU K, WANG D, et al. Multi-level recommendation reasoning over knowledge graphs with reinforcement learning[C]// Proceedings of the ACM Web Conference 2022. Lyon: WWW, 2022: 2098-2108.
|
69 |
WANG H, ZHANG F, WANG J, et al. Ripplenet: propaga-ting user preferences on the knowledge graph for recomm-ender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: CIKM, 2018: 417-426.
|
70 |
WANG H , ZHAO M , XIE X , et al. Knowledge graph convolutional networks for recommender systems [C]// The World Wide Web Conference. San Francisco: WWW, 2019: 3307-3313.
|
71 |
WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage: KDD, 2019: 950-958.
|
72 |
WANG H, ZHANG F, ZHANG M, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage: KDD, 2019: 968-977. .
|
73 |
WANG P, FAN Y, XIA L, et al. KERL: a knowledge-guided reinforcement learning model for sequential recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xian: SIGIR, 2020: 209-218.
|
74 |
WANG X, HUANG T, WANG D, et al. Learning intents behind interactions with knowledge graph for recommendation[C]// Proceedings of the Web Conference 2021. Ljubljana: WWW, 2021: 878-887.
|
75 |
TAI C Y, WU M R, CHU Y W, et al. Mvin: learning multiview items for recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi’an: SIGIR, 2020: 99-108.
|
76 |
WANG Z, LIN G, TAN H, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi’an: SIGIR, 2020: 219-228.
|
77 |
LIU D, LIAN J, WANG S, et al. KRED: knowledge-aware document representation for news recommendations[C]// 14th ACM Conference on Recommender Systems. Brazil: ACM, 2020: 200-209.
|
78 |
WANG J, SHI Y, LI D, et al McHa: a multistage clustering-based hierarchical attention model for knowledge graph-aware recommendation[J]. World Wide Web, 2022, 25 (3): 1103- 1127
doi: 10.1007/s11280-022-01022-5
|
79 |
HUANG Y, ZHAO F, GUI X, et al Path-enhanced explainable recommendation with knowledge graphs[J]. World Wide Web, 2021, 24 (5): 1769- 1789
doi: 10.1007/s11280-021-00912-4
|
80 |
MA T, HUANG L, LU Q, et al. KR-GCN: knowledge-aware reasoning with graph convolution network for explainable recommendation[J]. ACM Transactions on Information Systems (TOIS), 2023, 41(1): 1-27.
|
81 |
RENDLE S Factorization machines with libfm[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2012, 3 (3): 1- 22
|
82 |
CHEN M, ZHANG W, ZHU Y, et al. Meta-knowledge transfer for inductive knowledge graph embedding[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid: ACM, 2022: 927-937.
|
83 |
ZHOU Z, WANG C, FENG Y, et al JointE: jointly utilizing 1D and 2D convolution for knowledge graph embedding[J]. Knowledge-Based Systems, 2022, 240: 108100
doi: 10.1016/j.knosys.2021.108100
|
84 |
CUADRAS C M, AREANS C, FORTIANA J Some computational aspects of a distance—based model for prediction[J]. Communications in Statistics-simulation and Computation, 1996, 25 (3): 593- 609
doi: 10.1080/03610919608813332
|
85 |
陈曦, 陈华钧, 张文 规则增强的知识图谱表示学习方法[J]. 情报工程,, 2017, 3 (1): 26- 34 CHEN Xi, CHEN Hua-jun, ZHANG Wen Rule-augmented representation learningapproach in knowledge graph[J]. Technology Intelligence Engineering, 2017, 3 (1): 26- 34
doi: 10.3772/j.issn.2095-915x.2017.01.003
|
86 |
BORDES A, USUNIER N, GARCIA-DURAN A , et al. Translating embeddings for modeling multi-relational data[J]. Advances in Neural Information Processing Systems, 2013, 26: 2787-2795.
|
87 |
ZHEN W , ZHANG J , FENG J , et al. Knowledge graph embedding by translating on hyperplanes[C]// National Conference on Artificial Intelligence. Québec: AAAI Press, 2014, 28(1): 1112-1119.
|
88 |
LIN H, LIU Y, WANG W, et al Learning entity and relation embeddings for knowledge resolution[J]. Procedia Computer Science, 2017, 108: 345- 354
doi: 10.1016/j.procs.2017.05.045
|
89 |
JI G , HE S , XU L , et al. Knowledge graph embedding via dynamic mapping matrix[C]// Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing. Beijing: ACL, 2015: 687-696.
|
90 |
王婷, 朱小飞, 唐顾. 基于知识增强的图卷积神经网络的文本分类[J]. 浙江大学学报: 工学版, 2022, 56(2): 322-328. WANG Ting, ZHU Xiao-fei, TANG Gu. Knowledge-enhanced graph convolutional neural networks for text classification [J]. Journal of Zhejiang University: Engineering Science, 2022, 56(2): 322-328.
|
91 |
YU D, ZHU C, YANG Y, et al. Jaket: joint pre-training of knowledge graph and language understanding[C]// Proceedings of the AAAI Conference on Artificial Intelligence. London: AAAI, 2022, 36(10): 11630-11638.
|
92 |
YU X, REN X, SUN Y, et al. Personalized entity recommendation: a heterogeneous information network approach[C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: KDD, 2014: 283-292.
|
93 |
DONG C, JU X, MA Y. HRS: hybrid recommendation system based on attention mechanism and knowledge graph embedding[C]// IEEE/WIC/ACM International Conference on Web Intelligence. Melbourne: WI, 2021: 406-413.
|
94 |
LIU G, GUO J Bidirectional LSTM with attention mechanism and convolutional layer for text classification[J]. Neurocomputing, 2019, 337: 325- 338
doi: 10.1016/j.neucom.2019.01.078
|
95 |
CHEN Y, LIU L, PHONEVILAY V, et al Image super-resolution reconstruction based on feature map attention mechanism[J]. Applied Intelligence, 2021, 51 (7): 4367- 4380
doi: 10.1007/s10489-020-02116-1
|
96 |
陈成, 张皞, 李永强, 等 关系生成图注意力网络的知识图谱链接预测[J]. 浙江大学学报:工学版, 2022, 56 (5): 1025- 1034 CHEN Cheng, ZHANG Hao, LI Yong-qiang, et al Knowledge graph link prediction based on relational generative graph attention network[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (5): 1025- 1034
|
97 |
ZHANG S, TONG H, XU J, et al Graph convolutional networks: a comprehensive review[J]. Computational Social Networks, 2019, 6 (1): 1- 23
doi: 10.1186/s40649-019-0061-6
|
98 |
CHEN M, WEI Z, HUANG Z, et al. Simple and deep graph convolutional networks[C]// International Conference on Machine Learning. Vienna: PMLR, 2020: 1725-1735.
|
99 |
WU F, SOUZA A, ZHANG T, et al. Simplifying graph convolutional networks[C]// International Conference on Machine Learning. Long Beach: PMLR, 2019: 6861-6871.
|
100 |
WILLIAMS R J Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8 (3): 229- 256
|
101 |
NOORIAN A, HAROUNABADI A, RAVANMEHR R A novel sequence-aware personalized recommendation system based on multidimensional information[J]. Expert Systems with Applications, 2022, 202: 117079
doi: 10.1016/j.eswa.2022.117079
|
102 |
潘承瑞, 何灵敏, 胥智杰, 等 融合知识图谱的双线性图注意力网络推荐算法[J]. 计算机工程与应用, 2021, 57 (1): 29- 37 PAN Cheng-rui, HE Ling-min, XU Zhi-jie, et al Fusion knowledge graph and bilinear graph attention network recommendation algorithm[J]. Computer Engineering and Application, 2021, 57 (1): 29- 37
doi: 10.3778/j.issn.1002-8331.2006-0141
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|