计算机技术 |
|
|
|
|
基于动态注意力网络的图像超分辨率重建 |
赵小强1,2,3( ),王泽1,宋昭漾1,蒋红梅1,2,3 |
1. 兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050 2. 甘肃省工业过程先进控制重点实验室,甘肃 兰州 730050 3. 兰州理工大学 国家级电气与控制工程实验教学中心,甘肃 兰州 730050 |
|
Image super-resolution reconstruction based on dynamic attention network |
Xiao-qiang ZHAO1,2,3( ),Ze WANG1,Zhao-yang SONG1,Hong-mei JIANG1,2,3 |
1. School of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2. Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou 730050, China 3. National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou University of Technology, Lanzhou 730050, China |
引用本文:
赵小强,王泽,宋昭漾,蒋红梅. 基于动态注意力网络的图像超分辨率重建[J]. 浙江大学学报(工学版), 2023, 57(8): 1487-1494.
Xiao-qiang ZHAO,Ze WANG,Zhao-yang SONG,Hong-mei JIANG. Image super-resolution reconstruction based on dynamic attention network. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1487-1494.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.08.002
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I8/1487
|
1 |
SI W, HAN J, YANG Z, et al. Research on key techniques for super-resolution reconstruction of satellite remote sensing images of transmission lines [C]// Journal of Physics: Conference Series. Sanya: ICAACE, 2021: 012092.
|
2 |
DEEBA F, KUN S, DHAREJO F A, et al Sparse representation based computed tomography images reconstruction by coupled dictionary learning algorithm[J]. IET Image Processing, 2020, 14 (11): 2365- 2375
doi: 10.1049/iet-ipr.2019.1312
|
3 |
ZHANG F, LIU N, CHANG L, et al Edge-guided single facial depth map super-resolution using CNN[J]. IET Image Processing, 2020, 14 (17): 4708- 4716
doi: 10.1049/iet-ipr.2019.1623
|
4 |
LI W, LIAO W Stable super-resolution limit and smallest singular value of restricted Fourier matrices[J]. Applied and Computational Harmonic Analysis, 2021, 51: 118- 156
doi: 10.1016/j.acha.2020.10.004
|
5 |
吴世豪, 罗小华, 张建炜, 等 基于FPGA的新边缘指导插值算法硬件实现[J]. 浙江大学学报: 工学版, 2018, 52 (11): 2226- 2232 WU Shi-hao, LUO Xiao-hua, ZHANG Jian-wei, et al FPGA-based hardware implementation of new edge-directed interpolation algorithm[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (11): 2226- 2232
|
6 |
段然, 周登文, 赵丽娟, 等 基于多尺度特征映射网络的图像超分辨率重建[J]. 浙江大学学报: 工学版, 2019, 53 (7): 1331- 1339 DUAN Ran, ZHOU Deng-wen, ZHAO Li-juan, et al Image super-resolution reconstruction based on multi-scale feature mapping network[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (7): 1331- 1339
|
7 |
DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution [C]// European Conference on Computer Vision. Zurich: ECCV, 2014: 184-199.
|
8 |
DONG C, LOY C C, HE K, et al Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38 (2): 295- 307
|
9 |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: CVPRW, 2017: 136-144.
|
10 |
TAI Y, YANG J, LIU X, et al. Memnet: a persistent memory network for image restoration [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: ICCV, 2017: 4539-4547.
|
11 |
AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network [C]// Proceedings of the European Conference on Computer Vision. Munich: ECCV, 2018: 252-268.
|
12 |
WANG C, LI Z , SHI J. Lightweight image super-resolution with adaptive weighted learning network [EB/OL]. [2019-04-04]. https://arxiv.org/abs/1904.02358.
|
13 |
WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision. Munich: ECCV, 2018: 3-19.
|
14 |
DAI T, CAI J, ZHANG Y, et al. Second-order attention network for single image super-resolution [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: CVPR, 2019: 11065-11074.
|
15 |
ZHANG Y, LI K, LI K, et al. Residual non-local attention networks for image restoration[EB/OL]. [2019-03-24]. https://arxiv.org/abs/1903.10082.
|
16 |
JIA X, BRABANDERE D B, TUYTELAARS T, et al. Dynamic filter networks for predicting unobserved views [C]// Proceedings of the European Conference on Computer Vision 2016 Workshops. Amsterdam: ECCVW, 2016: 1-2.
|
17 |
YANG B, BENDER G, LE Q V, et al. Condconv: conditionally parameterized convolutions for efficient inference [C]// Advances in Neural Information Processing Systems. 2019, 32: 767-779.
|
18 |
CHEN Y, DAI X, LIU M, et al. Dynamic convolution: attention over convolution kernels [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: CVPR, 2020: 11030-11039.
|
19 |
ZHANG Y, ZHANG J, WANG Q, et al. Dynet: dynamic convolution for accelerating convolutional neural networks [EB/OL]. [2020-04-22]. https://arxiv.org/abs/2004.10694.
|
20 |
ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks [C]// Proceedings of the European Conference on Computer Vision. Munich: ECCV, 2018: 286-301.
|
21 |
CHEN H, GU J, ZHANG Z. Attention in attention network for image super-resolution [EB/OL]. [2021-04-19]. https://arxiv.org/abs/2104.09497.
|
22 |
TIMOFTE R, AGUSTSSON E, VAN G L, et al. Ntire 2017 challenge on single image super-resolution: methods and results [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Hawaii: CVPRW, 2017: 114-125.
|
23 |
BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding [C]// Proceedings British Machine Vision Conference. Surrey: Springer, 2012: 1-10.
|
24 |
ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations [C]// International Conference on Curves and Surfaces. Avignon: ICCS, 2010: 711-730.
|
25 |
MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics [C]// Proceedings 18th IEEE International Conference on Computer Vision. Vancouver: ICCV, 2001: 416-423.
|
26 |
HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Santiago: IEEE, 2015: 5197-5206.
|
27 |
MATSUI Y, ITO K, ARAMAKI Y, et al Sketch-based manga retrieval using manga109 dataset[J]. Multimedia Tools and Applications, 2017, 76 (20): 21811- 21838
doi: 10.1007/s11042-016-4020-z
|
28 |
FEI Y, LIAN F H, YAN Y. An improved PSNR algorithm for objective video quality evaluation [C]// 2007 Chinese Control Conference. Zhangjiajie: CCC, 2007: 376-380.
|
29 |
WANG Z, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612
doi: 10.1109/TIP.2003.819861
|
30 |
KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. [2014-12-22]. https://arxiv.org/abs/1412.6980.
|
31 |
HUI Z, GAO X, YANG Y, et al. Lightweight image super-resolution with information multi-distillation network [C]// Proceedings of the 27th ACM International Conference on Multimedia. Ottawa: ACM, 2019: 2024-2032.
|
32 |
FANG F, LI J, ZENG T Soft-edge assisted network for single image super-resolution[J]. IEEE Transactions on Image Processing, 2020, 29: 4656- 4668
doi: 10.1109/TIP.2020.2973769
|
33 |
LIU Y, JIA Q, FAN X, et al Cross-srn: structure-preserving super-resolution network with cross convolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32 (8): 4927- 4939
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|