自动化技术 |
|
|
|
|
面向水下场景的轻量级图像语义分割网络 |
郭浩然( ),郭继昌*( ),汪昱东 |
天津大学 电气自动化与信息工程学院,天津 300072 |
|
Lightweight semantic segmentation network for underwater image |
Hao-ran GUO( ),Ji-chang GUO*( ),Yu-dong WANG |
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
1 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Santiago: IEEE, 2015: 3431-3440.
|
2 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495
doi: 10.1109/TPAMI.2016.2644615
|
3 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
4 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs [EB/OL]. [2014-12-22]. https://arxiv.org/abs/1412.7062.
|
5 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848
|
6 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. [2017-06-17]. https://arxiv.org/abs/1706.05587.
|
7 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2881-2890.
|
8 |
周登文, 田金月, 马路遥, 等 基于多级特征并联的轻量级图像语义分割[J]. 浙江大学学报: 工学版, 2020, 54 (8): 1516- 1524 ZHOU Deng-wen, TIAN Jin-yue, MA Lu-yao, et al Lightweight image semantic segmentation based on multi-level feature cascaded network[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (8): 1516- 1524
|
9 |
LIU F, FANG M Semantic segmentation of underwater images based on improved Deeplab[J]. Journal of Marine Science and Engineering, 2020, 8 (3): 188
doi: 10.3390/jmse8030188
|
10 |
ZHOU J, WEI X, SHI J, et al Underwater image enhancement via two-level wavelet decomposition maximum brightness color restoration and edge refinement histogram stretching[J]. Optics Express, 2022, 30 (10): 17290- 17306
doi: 10.1364/OE.450858
|
11 |
ZHOU J, WANG Y, ZHANG W, et al Underwater image restoration via feature priors to estimate background light and optimized transmission map[J]. Optics Express, 2021, 29 (18): 28228- 28245
doi: 10.1364/OE.432900
|
12 |
ZHOU J, YANG T, REN W, et al Underwater image restoration via depth map and illumination estimation based on a single image[J]. Optics Express, 2021, 29 (19): 29864- 29886
doi: 10.1364/OE.427839
|
13 |
ISLAM M J, EDGE C, XIAO Y, et al. Semantic segmentation of underwater imagery: dataset and benchmark [C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020: 1769-1776.
|
14 |
PASZKE A, CHAURASIA A, KIM S, et al. Enet: a deep neural network architecture for real-time semantic segmentation [EB/OL]. [2016-06-07]. https://arxiv.org/abs/1606.02147.
|
15 |
YUAN Y, HUANG L, GUO J, et al OCNet: object context for semantic segmentation[J]. International Journal of Computer Vision, 2021, 129 (8): 2375- 2398
doi: 10.1007/s11263-021-01465-9
|
16 |
ROMERA E, ALVAREZ J M, BERGASA L M, et al ERFNet: efficient residual factorized convnet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19 (1): 263- 272
|
17 |
WU T, TANG S, ZHANG R, et al CGNet: a light-weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 2020, 30: 1169- 1179
|
18 |
LI H, XIONG P, FAN H, et al. DFANet: deep feature aggregation for real-time semantic segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9522-9531.
|
19 |
WANG Y, ZHOU Q, LIU J, et al. LEDNet: a lightweight encoder-decoder network for real-time semantic segmentation [C]// 2019 IEEE International Conference on Image Processing. Taipei: IEEE, 2019: 1860-1864.
|
20 |
YU C, WANG J, PENG C, et al. Bisenet: bilateral segmentation network for real-time semantic segmentation [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 325-341.
|
21 |
YU C, GAO C, WANG J, et al Bisenet v2: bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129 (11): 3051- 3068
doi: 10.1007/s11263-021-01515-2
|
22 |
REUS G, MÖLLER T, JÄGER J, et al. Looking for seagrass: deep learning for visual coverage estimation [C]// 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans. Kobe: IEEE, 2018: 1-6.
|
23 |
SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
|
24 |
PENG C, ZHANG X, YU G, et al. Large kernel matters-improve semantic segmentation by global convolutional network [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4353-4361.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|