Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (12): 2373-2381    DOI: 10.3785/j.issn.1008-973X.2021.12.018
电子、通信与自动控制技术     
基于点分布模型的3D模型拟合方法
徐铸业1(),赵小强1,2,3,*(),蒋红梅1,2,3
1. 兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050
2. 兰州理工大学 甘肃省工业过程先进控制重点实验室,甘肃 兰州 730050
3. 兰州理工大学 国家级电气与控制工程实验教学中心,甘肃 兰州 730050
3D model fitting method based on point distribution model
Zhu-ye XU1(),Xiao-qiang ZHAO1,2,3,*(),Hong-mei JIANG1,2,3
1. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. Key Laboratory of Gansu Advanced Control for Industrial Process, Lanzhou University of Technology, Lanzhou 730050, China
3. National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou University of Technology, Lanzhou 730050, China
 全文: PDF(867 KB)   HTML
摘要:

针对传统方法构建的患者病患部位的3D解剖结构模型与测试样本拟合效果较差的问题,提出基于点分布模型的3D模型拟合方法(3DMFB-PDM). 对训练样本集进行数据处理,使模板样本与目标样本对齐,减小训练样本由于旋转及尺度变化产生的不利影响;在训练样本间建立对应关系,用正态分布表示患者的点分布模型;计算测试样本中的特征点与点分布模型中对应点间的距离,通过引入Mahalanobis距离和转换非线性方程组,使点间距最小.根据最小间距不断调整点分布模型的形状参数,使点分布模型与测试样本拟合.选取30组左侧股骨作为训练样本集实验验证3DMFB-PDM的有效性,结果表明引入附加项后的拟合误差小于未引入附加项的拟合误差. 将 3DMFB-PDM与其他3种方法进行对比,结果显示3DMFB-PDM的拟合误差最小,表明3DMFB-PDM能够有效地将患者病患部位的3D解剖结构模型与测试样本拟合.

关键词: 医学图像处理3D建模形状分析点分布模型Mahalanobis距离    
Abstract:

A 3D model fitting method based on point distribution model (3DMFB-PDM) was proposed, aiming at the problem of poor fitting between the 3D anatomical structure model of the patient’s part constructed by the traditional method and the test samples. Firstly, the data processing was performed on the training sample set to align the template sample with the target sample, and the adverse effects of training sample due to rotation and scale changes were alleviated. Then the correspondence among training samples was established, and the patient’s point distribution model with a normal distribution was represented. Finally, the distance between the feature point and the corresponding point in the point distribution model was calculated. By introducing the Mahalanobis distance and converting the nonlinear equations were to minimize the distance. Meanwhile, the shape parameters of the point distribution model were continuously adjusted according to the minimum distance, thus the point distribution model was fitted to the test samples. 30 groups of left femurs were selected as the training sample set for experimental verification to verify the effectiveness of 3DMFB-PDM. Results show that the fitting error after introducing additional terms is smaller than the fitting error without introducing additional terms. Comparing 3DMFB-PDM with the other three methods shows that the fitting error of 3DMFB-PDM is the smallest, which indicate that 3DMFB-PDM can effectively fit the 3D anatomical structure model of the patient’s part to the test samples.

Key words: medical image processing    3D modeling    shape analysis    point distribution model    Mahalanobis distance
收稿日期: 2021-01-05 出版日期: 2021-12-31
CLC:  TP 391.41  
基金资助: 国家自然科学基金资助项目 (61763029,61873116);国防基础科研项目(JCKY2018427C002)
通讯作者: 赵小强     E-mail: 1820481286@qq.com;xqzhao@lut.cn
作者简介: 徐铸业(1992—),男,博士生, 从事医学图像处理的研究. orcid.org/0000-0002-8680-2519.E-mail: 1820481286@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
徐铸业
赵小强
蒋红梅

引用本文:

徐铸业,赵小强,蒋红梅. 基于点分布模型的3D模型拟合方法[J]. 浙江大学学报(工学版), 2021, 55(12): 2373-2381.

Zhu-ye XU,Xiao-qiang ZHAO,Hong-mei JIANG. 3D model fitting method based on point distribution model. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2373-2381.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.12.018        https://www.zjujournals.com/eng/CN/Y2021/V55/I12/2373

图 1  3DMFB-PDM的建模与拟合流程图
图 2  30组左侧股骨的3D模型
ID 年龄 性别 W/kg H/cm F/n V
001 25 61 175 102 080 51 042
002 29 72 180 98 744 49 370
003 32 70 167 87 876 43 940
004 26 66 165 109 528 54 752
005 26 63 170 112 800 56 410
006 29 80 180 106 268 53 130
007 30 83 176 156 348 78 176
008 35 79 175 117 744 58 876
009 32 75 170 97 116 48 560
010 32 80 168 76 204 38 110
011 27 62 166 114 452 57 224
012 26 60 181 99 548 49 770
013 30 80 182 95 536 47 760
014 33 83 178 99 512 49 746
015 30 85 179 92 184 46 084
016 42 65 159 95 432 47 708
017 40 62 158 88 288 44 140
018 41 62 162 56 244 28 120
019 36 60 163 80 476 40 236
020 34 61 172 93 272 46 640
021 26 58 173 91 248 45 600
022 24 56 170 107 988 53 988
023 31 56 160 110 216 54 922
024 30 57 161 88 268 44 114
025 25 45 167 8 840 4 432
026 26 40 168 87 296 43 648
027 28 46 166 123 404 61 698
028 30 61 159 86 020 43 024
029 38 65 158 102 688 51 344
030 40 60 163 89 912 44 960
表 1  30组左侧股骨图像的人体测量学信息
图 3  模板样本的可视化结果
图 4  模板样本的点云表示
图 5  训练样本的点分布模型
图 6  特征向量表征变形模型的百分比
评价指标 Max Mean RMS
mm
ED 14.357 2.433 3.328
(ED+MD) 12.268 2.429 3.114
表 2  未引入附加项与引入附加项的误差比较
评价指标 ED (ED+MD)
Max Mean RMS Max Mean RMS
mm
样本1 15.227 3.064 4.025 13.046 3.015 3.633
样本2 14.629 2.921 3.359 12.437 2.437 3.217
样本3 13.753 2.735 3.016 12.067 2.361 3.024
样本4 15.664 2.863 3.968 12.821 2.501 3.208
表 3  点分布模型与多个测试样本的误差比较
方法 t 方法 t
s
MDL 10.146 文献[18] 2.414
SLIDE 12.269 文献[19] 9.382
文献[15] 6.025 3DMFB-PDM 2.359
表 4  不同方法构建点分布模型的时间对比
方法 Max Mean RMS
文献[15] 15.006 4.325 4.113
文献[19] 13.685 3.037 3.419
文献[18] 12.371 2.486 3.235
3DMFB-PDM 12.268 2.419 3.114
表 5  4种方法的误差比较
方法 样本2 样本3 样本4
Max Mean RMS Max Mean RMS Max Mean RMS
mm
文献[15] 13.965 3.974 4.261 14.217 4.233 4.037 14.368 4.725 4.479
文献[18] 12.174 2.316 3.216 12.537 2.518 3.168 12.265 2.241 3.092
文献[19] 13.962 3.114 3.512 13.379 2.983 3.428 13.315 3.016 3.374
3DMFB-PDM 12.037 2.165 3.191 12.366 2.401 3.037 12.117 2.235 2.894
表 6  4种方法在3个测试样本下的拟合误差
图 7  4种方法构建的点分布模型的模型性能对比
1 ALLAN A, KEALLEY C, SQUELCH A, et al Patient-specific 3D printed model of biliary ducts with congenital cyst[J]. Quantitative Imaging in Medicine and Surgery, 2019, 9 (1): 86- 93
doi: 10.21037/qims.2018.12.01
2 RAVIKUMAR N, GOOYA A, CIMEN S, et al Group-wise similarity registration of point sets using Student’s t-mixture model for statistical shape models[J]. Medical Image Analysis, 2018, 44 (2): 156- 176
3 CLOUTHIER A L, SMITH C R, VIGNOS M F, et al The effect of articular geometry features identified using statistical shape modelling on knee biomechanics[J]. Medical Engineering and Physics, 2019, 66 (4): 47- 55
4 MARC A F, STEFFEN S, JOERG N, et al Virtual reconstruction of bilateral midfacial defects by using statistical shape modeling[J]. Journal of Cranio-Maxillofacial Surgery, 2019, 47 (7): 1054- 1059
doi: 10.1016/j.jcms.2019.03.027
5 HOLLENBECK J F M, CAIN C M, FATTOR J A, et al Statistical shape modeling characterizes three-dimensional shape and alignment variability in the lumbar spine[J]. Journal of Biomechanics, 2018, 69 (3): 146- 155
6 SHIRK J D, KWAN L, SAIGAL C The use of 3-dimensional, virtual reality models for surgical planning of robotic partial nephrectomy[J]. Urology, 2019, 125 (3): 92- 97
7 SINDHU V, SOUNDARAPANDIAN S Three-dimensional modelling of femur bone using various scanning systems for modelling of knee implant and virtual aid of surgical planning[J]. Measurement, 2019, 141 (7): 190- 208
8 徐泽楷. 稀缺样本下基于深度学习的图像超分辨率方法研 究 [D]. 武汉: 华中科技大学, 2019: 11-21.
XU Ze-kai. Research on deep learning image super resolution sparse samples [D]. Wuhan: Huazhong University of Science and Technology, 2019: 11-21.
9 LIU T, QIN S, ZOU D, et al Mesoscopic modeling method of concrete based on statistical analysis of CT images[J]. Construction and Building Materials, 2018, 192 (12): 429- 441
10 MEAKIN J R, HOPKINS S J, CLARKE A In vivo assessment of thoracic vertebral shape from MRI data using a shape model[J]. Spine Deformity, 2019, 7 (4): 517- 524
doi: 10.1016/j.jspd.2018.10.005
11 REYNEKE C J F, LÜTHI M, BURDIN V, et al Review of 2-D/3-D reconstruction using statistical shape and intensity models and X-ray image synthesis: toward a unified framework[J]. IEEE Reviews in Biomedical Engineering, 2019, 12: 269- 286
doi: 10.1109/RBME.2018.2876450
12 NEUBERT A, FRIPP J, ENGSTROM C, et al Statistical shape model reconstruction with sparse anomalous deformations: application to intervertebral disc herniation[J]. Computerized Medical Imaging and Graphics, 2015, 46 (12): 11- 19
13 DAVIES R H. Learning shape: optimal models for analysing natural variability [D]. Manchester: University of Manchester, 2002: 34-40.
14 KELEMEN A, SZEKELY G, GERIG G Elastic model-based segmentation of 3-D neuroradiological data sets[J]. IEEE Transactions on medical Imaging, 1999, 18 (10): 828- 839
doi: 10.1109/42.811260
15 ECK S, WORZ S, MULLEROTT K, et al A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci[J]. Medical Image Analysis, 2016, 32 (8): 18- 31
16 DAVIES R H, COOTES T F, TAYLOR C J. A minimum description length approach to statistical shape modelling [M]// INSANA M F, LEAHY R M. Information processing in medical imaging. [S.l.]: Springer, 2001: 50-63.
17 PEREZ S I, BERNAL V, GONZALEZ P N Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation[J]. Journal of Anatomy, 2006, 208 (6): 769- 784
doi: 10.1111/j.1469-7580.2006.00576.x
18 PLESSERS K, VANDEN B P, VAN D C, et al Virtual reconstruction of glenoid bone defects using a statistical shape model[J]. Journal of Shoulder and Elbow Surgery, 2018, 27 (1): 160- 166
doi: 10.1016/j.jse.2017.07.026
19 NOLTE D, BULL A M J Femur finite element model instantiation from partial anatomies using statistical shape and appearance models[J]. Medical Engineering and Physics, 2019, 67 (5): 55- 65
20 HENSELER H, KHAMBAY B, JU X, et al Landmark-based statistical procrustes analysis in the examination of breast shape and symmetry[J]. Handchirurgie, Mikrochirurgie, Plastische Chirurgie, 2014, 46 (6): 342- 349
21 LUTHI M, GERIG T, JUD C, et al Gaussian process morphable models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (8): 1860- 1873
doi: 10.1109/TPAMI.2017.2739743
22 BEDKOWSKI J, PELKA M, MAJEK K, et al. Open source robotic 3D mapping framework with ROS —robot operating system, PCL—point cloud library and cloud compare [C]// 2015 International Conference on Electrical Engineering and Informatics. Denpasar: IEEE, 2015: 644-649.
23 YU W, TANNAST M, ZHENG G Non-rigid free-form 2D–3D registration using a B-spline-based statistical deformation model[J]. Pattern Recognition, 2017, 63: 689- 699
doi: 10.1016/j.patcog.2016.09.036
24 邹涛, 王继成, 黄源, 等 中文文档自动分类系统的设计与实现[J]. 中文信息学报, 1999, 13 (3): 26- 32
ZOU Tao, WANG Ji-cheng, HUANG Yuan, et al The design and implementation of an automatic Chinese documents classification system[J]. Journal of Chinese Information processing, 1999, 13 (3): 26- 32
25 GUHA S, RASTOGI R, SHIM K Rock: a robust clustering algorithm for categorical attributes[J]. Information Systems, 1999, 25 (5): 345- 366
26 HAQ R, CATES J, BESACHIO D A, et al. Statistical shape model construction of lumbar vertebrae and intervertebral discs in segmentation for discectomy surgery simulation [M]// VRTOVEC T, YAO J, GLOCKER B, et al. Computational methods and clinical applications for spine imaging. [S.l.]: Springer, 2015: 85-96.
27 MUTSVANGWA T, BURDIN V, SCHWARTZ C, et al An automated statistical shape model developmental pipeline: application to the human scapula and humerus[J]. IEEE Transactions on Biomedical Engineering, 2014, 62 (4): 1098- 1107
[1] 张敏 张恒义 郑筱祥. 基于轮廓曲率和谱系聚类的大鼠体态自动识别[J]. J4, 2006, 40(3): 524-527.