Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (12): 2365-2372    DOI: 10.3785/j.issn.1008-973X.2021.12.017
电子、通信与自动控制技术     
自适应死区时间控制的数字控制ACF变换器
刘克峰(),何嘉保,奚剑雄,何乐年*()
浙江大学 超大规模集成电路设计研究所,浙江 杭州 310027
Digitally controlled active clamp flyback converter with adaptive dead time control
Ke-feng LIU(),Jia-bao HE,Jian-xiong XI,Le-nian HE*()
Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1565 KB)   HTML
摘要:

为了提高有源箝位反激(ACF)变换器的转换效率,提出基于自适应死区时间控制(ADTC)的数字控制ACF变换器设计技术. 通过副边采样检测2个原边功率管的零电压开关(ZVS)信息,实现对死区时间的自适应控制和功率管的ZVS,副边采样使采样器件的耐压要求降低. 基于CoolMOS功率管,开发ACF变换器的45 W (20 V/2.25 A)样机验证系统设计,用现场可编程门阵列(FPGA)实现数字控制. 测试结果表明,变换器在300 kHz开关频率下正常工作,在155 V直流电压输入和不同负载条件下自适应控制死区时间,实现原边功率管的ZVS,系统最高和最低效率分别为97.48%和92.86%.

关键词: 有源箝位反激(ACF)数字控制死区时间控制转换效率零电压开关(ZVS)副边采样    
Abstract:

The design technique of the digitally controlled active clamp flyback (ACF) converter based on adaptive dead time control (ADTC) was proposed in order to improve conversion efficiency of the converter. The zero voltage switching (ZVS) information for two primary switches was detected by the secondary-side sampling, then the dead time was controlled adaptively, and the ZVS for switches was achieved. The withstand voltage requirements of sampling device were reduced by the secondary-side sampling. The system design was verified on a 45 W (20 V/2.25 A) prototype of a CoolMOS-based ACF converter, and a field-programmable gate array (FPGA) was used to achieve digital control. Measured results showed that the converter could operate normally at 300 kHz, the dead time was controlled adaptively under 155 V DC voltage input and different loads conditions, and the ZVS for primary switches was achieved. The highest and the lowest efficiency of the system were 97.48% and 92.86 % respectively.

Key words: active clamp flyback (ACF)    digital control    dead time control    conversion efficiency    zero voltage switch (ZVS)    secondary-side sampling
收稿日期: 2021-03-04 出版日期: 2021-12-31
CLC:  TN 403  
通讯作者: 何乐年     E-mail: liukf@zju.edu.cn;helenian@vlsi.zju.edu.cn
作者简介: 刘克峰(1998—),男,硕士生,从事模拟集成电路和电源管理芯片研究. orcid.org/0000-0002-6724-4339. E-mail: liukf@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘克峰
何嘉保
奚剑雄
何乐年

引用本文:

刘克峰,何嘉保,奚剑雄,何乐年. 自适应死区时间控制的数字控制ACF变换器[J]. 浙江大学学报(工学版), 2021, 55(12): 2365-2372.

Ke-feng LIU,Jia-bao HE,Jian-xiong XI,Le-nian HE. Digitally controlled active clamp flyback converter with adaptive dead time control. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2365-2372.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.12.017        https://www.zjujournals.com/eng/CN/Y2021/V55/I12/2365

图 1  ACF变换器的功率级电路
图 2  ACF变换器的简化关键波形
图 3  基于自适应死区时间控制(ADTC)的数字控制ACF变换器
图 4  输出电压控制电路
图 5  时钟产生模块
图 6  FWD采样比较电路
图 7  箝位管时序产生模块
图 8  自适应死区时间控制仿真波形
图 9  数字隔离器
图 10  原边控制和半桥驱动模块
图 11  ACF变换器的测试平台
图 12  在155 V直流电压输入和不同负载下45 W样机的稳态波形
图 13  在155 V直流电压输入和不同负载下的转换效率对比
方案 控制方式 ηavg ηmax
%
文献[5] 模拟 94.3
文献[20] 模拟 94
文献[6] 数字 91.94 94.12
本研究 数字 94.83 97.48
表 1  不同ACF变换器控制方案的效率比较
1 HUANG X C. High frequency GaN characterization and design considerations [D]. Blacksburg: Virginia Polytechnic Institute and State University, 2016: 87-132.
2 黄秀成. 非互补有源箝位反激变流器的研究 [D]. 杭州: 浙江大学, 2011: 3-22.
HUANG Xiu-cheng. Research on assymmetrical active-clamp flyback converter [D]. Hangzhou: Zhejiang University, 2011: 3-22.
3 XUE L X, ZHANG J. Active clamp flyback using GaN power IC for power adapter applications [C]// 2017 IEEE Applied Power Electronics Conference and Exposition. Tampa: IEEE, 2017: 2441-2448.
4 XUE L X, ZHANG J. Design considerations of highly-efficient active clamp flyback converter using GaN power ICs [C]// 2018 IEEE Applied Power Electronics Conference and Exposition. San Antonio: IEEE, 2018: 777-782.
5 TANG S P, XI J X, HE L N. A GaN-based MHz active clamp flyback converter with adaptive dual edge dead time modulation for AC-DC adapters [C]// IECON 2017−43rd Annual Conference of the IEEE Industrial Electronics Society. Beijing: IEEE, 2017: 546-553.
6 GU D L, XI J X, HE L N Digitally controlled GaN-based MHz active clamp flyback converter with dynamic dead time optimisation for AC –DC adapter[J]. IET Power Electronics, 2020, 13 (16): 3777- 3786
doi: 10.1049/iet-pel.2020.0464
7 ONSEMI. NCP1568: AC-DC active clamp flyback PWM IC [EB/OL]. [2021-03-20]. https://www.onsemi.cn/pdf/datasheet/ncp1568-d.pdf.
8 邱建平. 基于模拟与数字控制技术的电源管理芯片关键技术研究 [D]. 杭州: 浙江大学, 2013: 23-24.
QIU Jian-ping. Research on the key techniques of power management IC with analog and digital control [D]. Hangzhou: Zhejiang University, 2013: 23-24.
9 刘侃. 高性能AC-DC转换器芯片的关键技术研究 [D]. 杭州: 浙江大学, 2017: 29-30.
LIU Kan. Research on the key techniques of high performance AC-DC converter IC [D]. Hangzhou: Zhejiang University, 2017: 29-30.
10 冷亚辉. 高集成度高效率交流−直流(AC-DC)变换器输出控制的关键技术研究 [D]. 杭州: 浙江大学, 2018: 4-12.
LENG Ya-hui. Research on the output controlling key techniques of high integration and efficiency AC-DC converter [D]. Hangzhou: Zhejiang University, 2018: 4-12.
11 马梦娇. 基于原副边集成控制及软开关技术的AC-DC转换器设计 [D]. 杭州: 浙江大学, 2020: 19-25.
MA Meng-jiao. A design of AC-DC converter based on the primary and secondary side integrated control and soft switching technology [D]. Hangzhou: Zhejiang University, 2020: 19-25.
12 虞楠楠. 高精度原边控制恒流/恒压AC-DC控制芯片设计 [D]. 杭州: 浙江大学, 2020: 6-17.
YU Nan-nan. A primary side controlled AC-DC controller with constant current or constant voltage output and high precision [D]. Hangzhou: Zhejiang University, 2020: 6-17.
13 曹建宇. 基于原副边集成的反激式AC-DC转换器数字电源管理芯片设计 [D]. 杭州: 浙江大学, 2020: 2-13.
CAO Jian-yu. A design of flyback AC-DC converter digital power management chip based on primary and secondary side integration [D]. Hangzhou: Zhejiang University, 2020: 2-13.
14 GU D L, XI J X, HE L N. A digital PWM controller of MHz active clamp flyback with GaN devices for AC-DC adapter [C]// IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. Lisbon: IEEE, 2019: 1496-1501.
15 XU S, ZHANG X M, WANG C, et al High precision constant voltage digital control scheme for primary-side controlled flyback converter[J]. IET Power Electronics, 2016, 9 (13): 2522- 2533
doi: 10.1049/iet-pel.2015.0771
16 LABELLA T, YORK B, HUTCHENS C, et al. Dead time optimization through loss analysis of an active-clamp flyback converter utilizing GaN devices [C]// 2012 IEEE Energy Conversion Congress and Exposition. Raleigh: IEEE, 2012: 3882-3889.
17 XU S, CHENG S L, WANG C, et al Digital regulation scheme for multimode primary-side controlled flyback converter[J]. IET Power Electronics, 2016, 9 (4): 782- 788
doi: 10.1049/iet-pel.2015.0025
18 XU S, KOU X P, WANG C, et al. New digital control method for improving dynamic response of synchronous rectified flyback converter with CCM and DCM mode [C]// 2018 IEEE Applied Power Electronics Conference and Exposition. San Antonio: IEEE, 2018: 338-343.
19 PATELLA B J, PRODIC A, ZIRGER A, et al High-frequency digital PWM controller IC for DC-DC converters[J]. IEEE Transactions on Power Electronics, 2003, 18 (1): 438- 446
doi: 10.1109/TPEL.2002.807121
[1] 刘子恒,孟凡易,王晨菲,马凯学. 单片集成谐振式升压转换器设计[J]. 浙江大学学报(工学版), 2022, 56(5): 1035-1043.
[2] 张爱兵,闫文凯,庞丹丹,王保林,王骥. 热电偶臂构型尺寸对环形热电发电器性能的影响[J]. 浙江大学学报(工学版), 2020, 54(5): 947-953.
[3] 胡杭辉,邓争志,姚炎明,赵西增. 离岸式振荡水柱波能装置的理论及数值研究[J]. 浙江大学学报(工学版), 2019, 53(2): 325-335.
[4] 王仕韬, 张达敏, 吕征宇, 张德华. 具有快速电流动态响应的晶闸管整流控制器[J]. J4, 2012, 46(2): 189-193.
[5] 冷洪滨 邬义杰 潘晓弘. 三次多项式型段内加减速控制新方法[J]. J4, 2008, 42(8): 1440-1444.