Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 947-953    DOI: 10.3785/j.issn.1008-973X.2020.05.012
机械工程     
热电偶臂构型尺寸对环形热电发电器性能的影响
张爱兵1,*(),闫文凯1,庞丹丹2,王保林3,王骥1
1. 宁波大学 机械工程与力学学院 压电器件技术实验室,浙江 宁波 315211
2. 河南城建学院 河南省水体污染防治与修复重点实验室,河南 平顶山 467036
3. 西悉尼大学 工程学院 基础设施研究中心,澳大利亚 新南威尔士 彭里斯 2751
Effect of configuration size of thermoelectric couple on performance of annular thermoelectric generator
Ai-bing ZHANG1,*(),Wen-kai YAN1,Dan-dan PANG2,Bao-lin WANG3,Ji WANG1
1. Piezoelectric Device Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
2. Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467002, China
3. Centre for Infrastructure Engineering, School of Engineering, Western Sydney University, Penrith 2751, Australia
 全文: PDF(1070 KB)   HTML
摘要:

基于一维稳态热传导理论提出环形热电发电器(ATEG)的数学物理模型,考虑P型和N型热电偶臂的构型尺寸、材料热电性质不对称性以及界面接触阻力对其输出性能的影响. 针对理想的环形热电发电器,基于最大能量转换效率原则建立P型和N型热电偶臂构型尺寸与材料性质间的最优定量关系. 考虑界面接触热阻和界面接触电阻效应的影响,给出相对于精确解更方便实用的电流线性简化解,确定环形热电发电器最大输出功率、最大能量转换效率对应的P型、N型热电偶臂圆周角度比. 发现界面接触对小尺寸器件的热电偶臂圆周角度比影响显著,但随着器件构型尺寸的增大,比值逐渐趋近于理想器件的结果.当器件尺寸参数sr>2时,可以基于理想模型指导环形热电发电器的设计计算.

关键词: 环形热电发电器热电偶臂构型尺寸接触阻力输出功率能量转换效率    
Abstract:

A theoretical model was provided for the annular thermoelectric generator (ATEG) based on the one-dimensional steady heat transport theory. Effects of configuration size of P-type and N-type thermoelectric couple, asymmetry of material properties of thermoelectric couple and interface contact resistance on the output performance of ATEG were considered. The relationship between configuration size of P-type and N-type thermoelectric couple and their material properties was determined for the ideal ATEG based on the principle of maximum energy conversion efficiency. The influence of interface contact heat resistance and electrical resistance was considered, and the linear simplified solution which is more convenient to use than exact solution was obtained. The optimized angle ratio of N-type to P-type thermoelectric legs in the direction of circumference was also determined when the maximum output power and maximum conversion efficiency of ATEG attained. The interface contact resistance has a significant effect on the optimized anlge ratio for the short ATEG, and this ratio approaches to the ideal solution gradually as the configuration size of ATEG increases. Resluts obtained based on the ideal model can be used to guide the design of the realistic ATEG device when the size parameter sr is greater than 2.

Key words: annular thermoelectric generator    configuration size of thermoelectric couple    contact resistance    output power    energy conversion efficiency
收稿日期: 2019-04-19 出版日期: 2020-05-05
CLC:  TK 01+8  
基金资助: 宁波市自然科学基金资助项目(2019A610151);浙江省自然科学基金资助项目(LY17A020001)
通讯作者: 张爱兵     E-mail: zhangaibing@nbu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张爱兵
闫文凯
庞丹丹
王保林
王骥

引用本文:

张爱兵,闫文凯,庞丹丹,王保林,王骥. 热电偶臂构型尺寸对环形热电发电器性能的影响[J]. 浙江大学学报(工学版), 2020, 54(5): 947-953.

Ai-bing ZHANG,Wen-kai YAN,Dan-dan PANG,Bao-lin WANG,Ji WANG. Effect of configuration size of thermoelectric couple on performance of annular thermoelectric generator. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 947-953.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.012        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/947

图 1  环形热电发电器示意图
θN/θP sr = 1.05 sr = 1.20 sr = 1.50 sr = 2.00
Ie Il e/% Ie Il e/% Ie Il e/% Ie Il e/%
0.1 0.154 5 0.154 7 0.129 4 0.125 8 0.126 1 0.238 5 0.079 8 0.080 0 0.250 0 0.053 2 0.053 3 0.188 0
0.5 0.611 9 0.612 7 0.130 7 0.525 6 0.527 2 0.304 4 0.341 9 0.343 2 0.378 8 0.230 6 0.231 4 0.346 9
1.0 0.971 4 0.972 6 0.123 5 0.872 2 0.875 0 0.321 0 0.580 6 0.582 9 0.394 6 0.395 9 0.397 4 0.378 9
2.0 1.375 5 1.377 2 0.123 6 1.301 1 1.305 6 0.345 9 0.891 8 0.895 7 0.435 4 0.616 9 0.619 6 0.437 7
4.0 1.736 9 1.738 9 0.115 1 1.725 6 1.731 8 0.359 3 1.218 5 1.224 3 0.473 7 0.855 8 0.860 0 0.490 8
表 1  电流的精确解与线性解对比及误差分析(情况1:Bi2Te3-Bi0.5Sb1.5Te3)
材料 α/(μV·K?1) σ /(S·m?1) λ/(W·m?1·K?1)
BiSbTe 213 27 700 0.70
Bi2Te3 200 110 000 1.60
Bi0.5Sb1.5Te3 250 38 000 0.85
表 2  热电材料BiSbTe、Bi2Te3和Bi0.5Sb1.5Te3参数表[21]
图 2  环形热电发电器输出功率与器件长度的关系
图 3  环形热电发电器能量转换效率与器件长度的关系
sr η/% θN/θP sr η/% θN/θP
1.05 1.35 1.505 2.00 4.29 2.273
1.20 3.26 1.972 3.00 4.42 2.316
1.50 4.02 2.192 4.00 4.46 2.321
表 3  环形热电发电器能量转换效率、最优圆周角度比与器件尺寸的关系
图 4  环形热电发电器输出功率与热电偶臂圆周角度比的关系
图 5  环形热电发电器能量转换效率与热电偶臂圆周角度比的关系
图 6  环形热电发电器热电偶臂长度比和圆周角度比对输出功率的影响
图 7  环形热电发电器热电偶臂长度比和圆周角度比对能量转换效率的影响
1 DISALVO F J Thermoelectric cooling and power generation[J]. Science, 1999, 285 (5428): 703- 706
doi: 10.1126/science.285.5428.703
2 HE J, TRITT T M Advances in thermoelectric materials research: looking back and moving forward[J]. Science, 2017, 357 (6358): 1469
3 ROWE D M. CRC handbook of thermoelectrics [M]. Boca Raton: CRC Press, 1995.
4 KIM H S, WANG T B, LIU W S, et al Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators[J]. Advanced Functional Materials, 2016, 26 (21): 3678- 3686
doi: 10.1002/adfm.201600128
5 GOMEZ M, REID R, OHARA B, et al Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting[J]. Journal of Applied Physics, 2013, 113 (17): 174908
doi: 10.1063/1.4802668
6 SAHIN A Z, YIBAS B The thermoelement as thermoelectric power generator: effect of leg geometry on efficiency and power generation[J]. Energy Conversion and Management, 2013, 65: 26- 32
doi: 10.1016/j.enconman.2012.07.020
7 NIU Z Q, YU S H, DIAO H, et al Elucidating modeling aspects of thermoelectric generator[J]. International Journal of Heat and Mass Transfer, 2015, 50: 683- 692
8 WANG P, WANG K F, WANG B L, et al Modeling of thermoelectric generators with effects of side surface heat convection and temperature dependence of material properties[J]. International Journal of Heat and Mass Transfer, 2019, 133: 1145- 1153
doi: 10.1016/j.ijheatmasstransfer.2019.01.006
9 PANG D D, ZHANG A B, WANG B L, et al Theoretical analysis of the thermoelectric generator considering surface to surrounding heat convection and contact resistance[J]. Journal of Electronic Materials, 2019, 48 (1): 596- 602
doi: 10.1007/s11664-018-6759-7
10 SIDDIQUE A R M, KRATZ F, MAHMUD S, et al Energy conversion by nanomaterial-based trapezoidal-shaped leg of thermoelectric generator considering convectin heat transfer effect[J]. Journal of Energy Resources Technology, 2019, 141 (8): 082001
doi: 10.1115/1.4042644
11 ZHANG A B, WANG B L, PAND D D, et al Effects of interface layers on the performance of annular thermoelectric generators[J]. Energy, 2018, 147: 612- 620
doi: 10.1016/j.energy.2018.01.098
12 GRANE D, LAGRANDEUR J, JOVOVIC V, et al TEG on-vehicle performance and model validation and what it means for further TEG development[J]. Journal of Electronic Materials, 2013, 42 (7): 1582- 1591
doi: 10.1007/s11664-012-2327-8
13 HE W, SU Y H, WANG Y Q, et al A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors[J]. Renewable Energy, 2012, 37 (1): 142- 149
doi: 10.1016/j.renene.2011.06.002
14 MILJKOVIC N, WANG E N Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons[J]. Solar Energy, 2011, 85 (11): 5843- 5855
15 MIN G, ROWE D M Ring-structured thermoelectric module[J]. Semiconductor Science and Technology, 2007, 22 (8): 880- 883
doi: 10.1088/0268-1242/22/8/009
16 SHEN Z G, WU S Y, XIAO L Theoretical analysis on the performance of annular thermoelectric couple[J]. Energy Conversion and Management, 2015, 89: 244- 250
doi: 10.1016/j.enconman.2014.09.071
17 ZHANG A B, WANG B L, PANG D D, et al Influence of leg geometry configuration and contact resistance on the performance of annular thermoelectric generators[J]. Energy Conversion and Management, 2018, 166: 337- 342
doi: 10.1016/j.enconman.2018.04.042
18 LBEAGWU O L Modelling and comprehensive analysis of TEGs with diverse variable leg geometry[J]. Energy, 2019, 180: 90- 106
doi: 10.1016/j.energy.2019.05.088
19 JI D X, WEI Z B, JOSEP P, et al Geometry optimization of thermoelectric modules: simulation and experimental study[J]. Energy Conversion and Management, 2019, 195: 236- 243
doi: 10.1016/j.enconman.2019.05.003
20 SHITTU S, LI G Q, ZHAO X D, et al Series of detail comparison and optimization of thermoelectric element geometry considering the PV effect[J]. Renewable Energy, 2019, 130: 930- 942
doi: 10.1016/j.renene.2018.07.002
[1] 付丛丛,李醒飞,杨少波,李洪宇,谭文斌. 海洋浮标感应耦合电能传输系统频率分裂特性及最大功率点分析[J]. 浙江大学学报(工学版), 2020, 54(3): 475-482.
[2] 于冉冉, 刘联胜, 葛明慧, 赵景维. 太阳能温差发电系统的性能[J]. 浙江大学学报(工学版), 2018, 52(4): 769-774.
[3] 田燕萍,金肖玲,王永. 强化现象启发的随机振动能量收集器优化设计[J]. 浙江大学学报(工学版), 2016, 50(5): 934-940.