机械工程 |
|
|
|
|
热电偶臂构型尺寸对环形热电发电器性能的影响 |
张爱兵1,*(),闫文凯1,庞丹丹2,王保林3,王骥1 |
1. 宁波大学 机械工程与力学学院 压电器件技术实验室,浙江 宁波 315211 2. 河南城建学院 河南省水体污染防治与修复重点实验室,河南 平顶山 467036 3. 西悉尼大学 工程学院 基础设施研究中心,澳大利亚 新南威尔士 彭里斯 2751 |
|
Effect of configuration size of thermoelectric couple on performance of annular thermoelectric generator |
Ai-bing ZHANG1,*(),Wen-kai YAN1,Dan-dan PANG2,Bao-lin WANG3,Ji WANG1 |
1. Piezoelectric Device Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China 2. Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467002, China 3. Centre for Infrastructure Engineering, School of Engineering, Western Sydney University, Penrith 2751, Australia |
引用本文:
张爱兵,闫文凯,庞丹丹,王保林,王骥. 热电偶臂构型尺寸对环形热电发电器性能的影响[J]. 浙江大学学报(工学版), 2020, 54(5): 947-953.
Ai-bing ZHANG,Wen-kai YAN,Dan-dan PANG,Bao-lin WANG,Ji WANG. Effect of configuration size of thermoelectric couple on performance of annular thermoelectric generator. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 947-953.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.012
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I5/947
|
1 |
DISALVO F J Thermoelectric cooling and power generation[J]. Science, 1999, 285 (5428): 703- 706
doi: 10.1126/science.285.5428.703
|
2 |
HE J, TRITT T M Advances in thermoelectric materials research: looking back and moving forward[J]. Science, 2017, 357 (6358): 1469
|
3 |
ROWE D M. CRC handbook of thermoelectrics [M]. Boca Raton: CRC Press, 1995.
|
4 |
KIM H S, WANG T B, LIU W S, et al Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators[J]. Advanced Functional Materials, 2016, 26 (21): 3678- 3686
doi: 10.1002/adfm.201600128
|
5 |
GOMEZ M, REID R, OHARA B, et al Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting[J]. Journal of Applied Physics, 2013, 113 (17): 174908
doi: 10.1063/1.4802668
|
6 |
SAHIN A Z, YIBAS B The thermoelement as thermoelectric power generator: effect of leg geometry on efficiency and power generation[J]. Energy Conversion and Management, 2013, 65: 26- 32
doi: 10.1016/j.enconman.2012.07.020
|
7 |
NIU Z Q, YU S H, DIAO H, et al Elucidating modeling aspects of thermoelectric generator[J]. International Journal of Heat and Mass Transfer, 2015, 50: 683- 692
|
8 |
WANG P, WANG K F, WANG B L, et al Modeling of thermoelectric generators with effects of side surface heat convection and temperature dependence of material properties[J]. International Journal of Heat and Mass Transfer, 2019, 133: 1145- 1153
doi: 10.1016/j.ijheatmasstransfer.2019.01.006
|
9 |
PANG D D, ZHANG A B, WANG B L, et al Theoretical analysis of the thermoelectric generator considering surface to surrounding heat convection and contact resistance[J]. Journal of Electronic Materials, 2019, 48 (1): 596- 602
doi: 10.1007/s11664-018-6759-7
|
10 |
SIDDIQUE A R M, KRATZ F, MAHMUD S, et al Energy conversion by nanomaterial-based trapezoidal-shaped leg of thermoelectric generator considering convectin heat transfer effect[J]. Journal of Energy Resources Technology, 2019, 141 (8): 082001
doi: 10.1115/1.4042644
|
11 |
ZHANG A B, WANG B L, PAND D D, et al Effects of interface layers on the performance of annular thermoelectric generators[J]. Energy, 2018, 147: 612- 620
doi: 10.1016/j.energy.2018.01.098
|
12 |
GRANE D, LAGRANDEUR J, JOVOVIC V, et al TEG on-vehicle performance and model validation and what it means for further TEG development[J]. Journal of Electronic Materials, 2013, 42 (7): 1582- 1591
doi: 10.1007/s11664-012-2327-8
|
13 |
HE W, SU Y H, WANG Y Q, et al A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors[J]. Renewable Energy, 2012, 37 (1): 142- 149
doi: 10.1016/j.renene.2011.06.002
|
14 |
MILJKOVIC N, WANG E N Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons[J]. Solar Energy, 2011, 85 (11): 5843- 5855
|
15 |
MIN G, ROWE D M Ring-structured thermoelectric module[J]. Semiconductor Science and Technology, 2007, 22 (8): 880- 883
doi: 10.1088/0268-1242/22/8/009
|
16 |
SHEN Z G, WU S Y, XIAO L Theoretical analysis on the performance of annular thermoelectric couple[J]. Energy Conversion and Management, 2015, 89: 244- 250
doi: 10.1016/j.enconman.2014.09.071
|
17 |
ZHANG A B, WANG B L, PANG D D, et al Influence of leg geometry configuration and contact resistance on the performance of annular thermoelectric generators[J]. Energy Conversion and Management, 2018, 166: 337- 342
doi: 10.1016/j.enconman.2018.04.042
|
18 |
LBEAGWU O L Modelling and comprehensive analysis of TEGs with diverse variable leg geometry[J]. Energy, 2019, 180: 90- 106
doi: 10.1016/j.energy.2019.05.088
|
19 |
JI D X, WEI Z B, JOSEP P, et al Geometry optimization of thermoelectric modules: simulation and experimental study[J]. Energy Conversion and Management, 2019, 195: 236- 243
doi: 10.1016/j.enconman.2019.05.003
|
20 |
SHITTU S, LI G Q, ZHAO X D, et al Series of detail comparison and optimization of thermoelectric element geometry considering the PV effect[J]. Renewable Energy, 2019, 130: 930- 942
doi: 10.1016/j.renene.2018.07.002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|