Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (3): 475-482    DOI: 10.3785/j.issn.1008-973X.2020.03.007
机械工程     
海洋浮标感应耦合电能传输系统频率分裂特性及最大功率点分析
付丛丛1(),李醒飞1,*(),杨少波1,李洪宇2,谭文斌3
1. 天津大学 精密测试技术及仪器国家重点实验室,天津 300072
2. 山东科技大学 机械电子工程学院,山东 青岛 266590
3. 青岛星酉智能科技有限公司,山东 青岛 266041
Frequency splitting characteristics and maximum power point analysis of ICPT system with ocean buoys
Cong-cong FU1(),Xing-fei LI1,*(),Shao-bo YANG1,Hong-yu LI2,Wen-bin TAN3
1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
2. School of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3. Qingdao Xingyou Intelligent Technology Co. Ltd, Qingdao 266041, China
 全文: PDF(1027 KB)   HTML
摘要:

为探究感应耦合电能传输(ICPT)系统中的频率偏移是否会对系统的最大输出功率产生影响,综合考虑线圈谐振频率、耦合系数,通过建立互感模型对基于海洋浮标的ICPT系统的频率分裂现象进行分析,选择输出功率作为重点研究对象,推导出在ICPT系统中输出功率与耦合系数,工作频率之间的关系表达式. 通过数值分析研究耦合系数、工作频率对频率分裂影响的一般化关系,并通过实验验证其结论. 结果表明:对线圈之间的耦合系数进行匹配,可以避免系统发生频率分裂,且在固有谐振频率处输出功率和效率达到最大值;若系统耦合系数固定,通过调整工作频率,可以使系统传输性能达到最优.

关键词: 感应耦合电能传输(ICPT)系统谐振频率频率分裂输出功率传输效率    
Abstract:

The frequency splitting phenomenon of inductive coupled power transmission (ICPT) system based on ocean buoys was analyzed, aiming at the problem that the maximum output power of the ICPT system was affected by the inductive coupling frequency offset. The mutual inductance model of ICPT system was established. Considering the coil resonance frequency and the coupling coefficient, the output power was taken as the key research object. And the relation expression between the output power and the coupling coefficient, the operating frequency in the ICPT system was presented. Meanwhile, the generalized influence of coupling coefficients and operating frequency was studied by numerical analysis. It is concluded that matching the coupling coefficients between the coils can avoid frequency splitting; the power and efficiency reach the maximum at the resonant frequency. In addition, if the system coupling coefficient is fixed, the system transmission performance can be optimal by adjusting the. operating frequency.

Key words: inductively coupled power transmission (ICPT) system    resonant frequency    frequency splitting    output power    transmission efficiency
收稿日期: 2019-05-09 出版日期: 2020-03-05
CLC:  TM 72  
基金资助: 国家自然科学基金资助项目(61733012);天津大学青岛海洋技术研究院自主创新创业资助项目(20190201-5);青岛市海洋工程与技术智库联合基金资助项目(20190131-2);山东省自然科学基金资助项目(ZR2017MEE072)
通讯作者: 李醒飞     E-mail: FuCongcong@tju.edu.cn;lixftju@sina.com
作者简介: 付丛丛(1995—),女,硕士生,从事感应耦合电能传输研究. orcid.org/0000-0002-4594-2654. E-mail: FuCongcong@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
付丛丛
李醒飞
杨少波
李洪宇
谭文斌

引用本文:

付丛丛,李醒飞,杨少波,李洪宇,谭文斌. 海洋浮标感应耦合电能传输系统频率分裂特性及最大功率点分析[J]. 浙江大学学报(工学版), 2020, 54(3): 475-482.

Cong-cong FU,Xing-fei LI,Shao-bo YANG,Hong-yu LI,Wen-bin TAN. Frequency splitting characteristics and maximum power point analysis of ICPT system with ocean buoys. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 475-482.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.03.007        http://www.zjujournals.com/eng/CN/Y2020/V54/I3/475

图 1  基于海洋浮标的感应耦合电能传输(ICPT)系统结构图
图 2  ICPT系统模型示意图
图 3  ICPT系统等效电路图
参数 数值 单位 参数 数值 单位
f0 24.8 kHz C1 330 nF
L1 124.5 μH C2 156 nF
L4 124.5 μH C3 330 nF
L2 15.0 μH R1 0.24 Ω
L5 124.5 μH R2 0.60 Ω
L3 124.5 μH R3 0.24 Ω
RL 50 Ω Vi 12 V
表 1  ICPT实验系统参数
图 4  不同水上耦合系数情况下功率随频率和水下耦合系数的变化关系
图 5  不同水下耦合系数情况下功率随频率和水上耦合系数的变化关系
图 6  不同频率下功率随水上、水下耦合系数的变化关系
图 7  ICPT实验系统
图 8  不同水上耦合系数情况下系统输出功率与频率的关系
图 9  不同水上耦合系数情况下系统效率与频率的关系
1 CHARETTE M A, SMITH W H F The volume of earth’s ocean[J]. Oceanography, 2010, 23 (2): 112- 114
doi: 10.5670/oceanog.2010.51
2 张强, 王玉峰 海洋浮标的非接触式电能与数据传输[J]. 仪器仪表学报, 2010, 31 (11): 2615- 2621
ZHANG Qiang, WANG Yu-feng Noncontact power and data delivery for ocean observation mooring buoy[J]. Chinese Journal of Scientific Instrument, 2010, 31 (11): 2615- 2621
3 王南朔, 李醒飞, 房诚, 等 浮标水下传感器非接触供电及通讯系统设计[J]. 电源技术, 2017, 41 (1): 131- 133
WANG Nan-shuo, LI Xing-fei, FANG Cheng, et al Design of contactless power and data transmission system for buoy's underwater sensors[J]. Chinese Journal of Power Sources, 2017, 41 (1): 131- 133
doi: 10.3969/j.issn.1002-087X.2017.01.041
4 李泽松. 基于电磁感应原理的水下非接触式电能传输技术研究[D]. 杭州: 浙江大学, 2010.
LI Ze-song. Underwater contactless power transmission based on electromagnetic induction[D]. Hangzhou: Zhejiang University, 2010.
5 LI Z, SONG K, WEI G, et al A 3 kW wireless power transfer system for sightseeing car supercapacitor charge[J]. IEEE Transactions on Power Electronics, 2016, 32 (5): 3301- 3316
6 刘溯奇, 谭建平, 薛少华, 等 多负载无线电能传输系统耦合机理特性分析[J]. 电力系统自动化, 2016, 40 (18): 84- 90
LIU Su-qi, TAN Jian-ping, XUE Shao-hua, et al Analysis on coupling mechanism characteristics of multi-load wireless power transmission system[J]. Automation of Electric Power Systems, 2016, 40 (18): 84- 90
doi: 10.7500/AEPS20160104001
7 FANG C, LI X, XIE Z, et al Design and optimization of an inductively coupled power transfer system for the underwater sensors of ocean buoys[J]. Energies, 2017, 10 (1): 8
8 XU J, LI X, XIE Z, et al Research on a multiple-receiver inductively coupled power transfer system for mooring buoy applications[J]. Energies, 2017, 10 (4): 519
doi: 10.3390/en10040519
9 林杰. 浮标系统非接触电能高效耦合及数据传输方法的研究[D]. 天津: 天津大学, 2012.
LIN Jie. Research on high coupling efficiency contactless power and data transmission for buoy[D]. Tianjin: Tianjin University, 2012.
10 李阳, 杨庆新, 闫卓, 等 磁耦合谐振式无线电能传输系统的频率特性[J]. 电机与控制学报, 2012, 16 (7): 7- 11
LI Yang, YANG Qing-xin, YAN Zhuo, et al Characteristic of frequency in wireless power transfer system via magnetic resonance coupling[J]. Electric Machines and Control, 2012, 16 (7): 7- 11
doi: 10.3969/j.issn.1007-449X.2012.07.002
11 李中启, 黄守道, 易吉良, 等 磁耦合谐振式无线电能传输系统频率分裂抑制方法[J]. 电力系统自动化, 2017, 41 (2): 21- 27
LI Zhong-qi, HUANG Shou-dao, YI Ji-liang, et al A method of preventing frequency splitting in magnetic coupling resonant wireless power transfer system[J]. Automation of Electric Power Systems, 2017, 41 (2): 21- 27
doi: 10.7500/AEPS20161008010
12 陈珂睿, 王泽忠, 刘胜南, 等 非接触式电能传输系统功率及效率影响因素[J]. 电网技术, 2014, 38 (3): 807- 811
CHEN Ke-rui, WANG Ze-zhong, LIU Sheng-nan, et a Impacting factors on power and efficiency of inductively coupled power transfer system[J]. Power System Technology, 2014, 38 (3): 807- 811
13 代小磊, 牛王强, 孟祥成 非接触电能传输(CPT)系统频率分裂现象分析[J]. 电源学报, 2012, (3): 67- 71
DAI Xiao-lei, NIU Wang-qiang, MENG Xiang-cheng Analysis of the frequency splitting phenomenon in con tactless power transfer systems[J]. Journal of Power Supply, 2012, (3): 67- 71
14 李新恒, 龚立娇, 冯力, 等 三线圈磁耦合谐振式无线电能传输系统频率特性分析[J]. 工矿自动化, 2018, 44 (3): 91- 96
LI Xin-heng, GONG Li-jiao, FENG Li, et al Analysis of frequency characteristics of three-coil magnetic coupling resonant wireless power transmission system[J]. Industry and Mine Automation, 2018, 44 (3): 91- 96
15 路倩云, 王文清, 翟志颖, 等 三线圈无线输电系统的频率分裂特性和抑制方法[J]. 电气工程学报, 2018, 13 (5): 27- 32
LU Qian-yun, WANG Wen-qing, ZHAI Zhi-ying, et al Frequency splitting characteristics and suppression method of three-coil wireless transmission system[J]. Journal of Electrical Engineering, 2018, 13 (5): 27- 32
16 李阳, 张雅希, 杨庆新, 等 磁耦合谐振式无线电能传输系统最大功率效率点分析与实验验证[J]. 电工技术学报, 2016, 31 (2): 18- 24
LI Yang, ZHANG Ya-xi, YANG Qing-xin, et al Analysis and experimental validation on maximum power and efficiency in wireless power transfer system via coupled magnetic resonances[J]. Transactions of China Electrotechnical Society, 2016, 31 (2): 18- 24
doi: 10.3969/j.issn.1000-6753.2016.02.003
17 李阳, 尹建斌, 杨庆新, 等 非对称耦合线圈内阻与品质因数对传输功率与效率及其频率分裂的影响[J]. 电工技术学报, 2018, 33 (12): 2742- 2750
LI Yang, YIN Jian-bin, YANG Qing-xin, et al Influence of internal resistance and quality factor on transfer power and efficiency and frequency splitting[J]. Transactions of China Electrotechnical Society, 2018, 33 (12): 2742- 2750
18 SAMPLE A P, MEYER D A, SMITH J R Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (2): 544- 554
doi: 10.1109/TIE.2010.2046002
19 李庚午. 磁耦合谐振式无线电能传输系统传输功效的优化与研究[D]. 沈阳: 沈阳工业大学, 2017.
LI Geng-wu. Optimization and research of transmission efficiency of magnetically coupled resonant wireless power transmission system[D]. Shenyang: Shenyang University of Technology, 2017.
[1] 张爱兵,闫文凯,庞丹丹,王保林,王骥. 热电偶臂构型尺寸对环形热电发电器性能的影响[J]. 浙江大学学报(工学版), 2020, 54(5): 947-953.
[2] 林一羽,郑旭东,吴海斌,马志鹏,金仲和. 采用恒频参量激励的微机械陀螺驱动控制方案[J]. 浙江大学学报(工学版), 2019, 53(9): 1795-1804.
[3] 于冉冉, 刘联胜, 葛明慧, 赵景维. 太阳能温差发电系统的性能[J]. 浙江大学学报(工学版), 2018, 52(4): 769-774.
[4] 田燕萍,金肖玲,王永. 强化现象启发的随机振动能量收集器优化设计[J]. 浙江大学学报(工学版), 2016, 50(5): 934-940.
[5] 陈旭东,程放,冯攀. 高阶控制系统动态性能分析[J]. J4, 2014, 48(1): 141-148.
[6] 于明湖, 张玉秋, 卢琴芬, 叶云岳. 动磁式横向磁通直线振荡电机设计[J]. J4, 2012, 46(2): 206-211.
[7] 汤珂,雷田,林小钢,金滔. 气-液与气体工质热声发动机性能对比[J]. J4, 2011, 45(7): 1244-1247.