Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 325-335    DOI: 10.3785/j.issn.1008-973X.2019.02.016
水资源与海洋工程     
离岸式振荡水柱波能装置的理论及数值研究
胡杭辉(),邓争志*(),姚炎明,赵西增
浙江大学 海洋学院,浙江 舟山 316000
Theoretical and numerical studies of off-shore oscillating water column wave energy device
Hang-hui HU(),Zheng-zhi DENG*(),Yan-ming YAO,Xi-zeng ZHAO
Ocean College, Zhejiang University, Zhoushan 316000, China
 全文: PDF(1986 KB)   HTML
摘要:

基于势流理论, 利用匹配特征函数展开法,求解微幅波与离岸式振荡水柱(OWC)波能转换装置相互作用的边界值问题. 借助FLUENT软件及其用户自定义函数(UDF),建立二维完全非线性波-OWC装置数值模型. 从理论和数值上分析OWC装置吃水深度、气室宽度以及墙体厚度对波能转换效率的影响,解析解和数值结果吻合较好.依靠数值模型,模拟波高变化对OWC装置工作效率的影响. 研究表明:OWC装置吃水深度的增加会导致高效频率带宽变窄,峰值向低频区移动;墙体厚度的增加会导致高频区波能转换效率下降,但对低频区影响较小;气室宽度的增大会导致高效频率带宽变宽,峰值向低频区移动;波高的增大会导致波能转换效率下降,在共振频率附近尤为明显.

关键词: 振荡水柱波能转换装置计算流体动力学势流理论匹配特征函数展开法波能转换效率    
Abstract:

The boundary value problem of the interaction between the small amplitude wave and the off-shore oscillating water column (OWC) wave energy devices was solved by means of the matched eigenfunction expansion method based on the potential flow theory. A two-dimensional fully nonlinear wave-OWC numerical model was established by employing the FLUENT software and its associated user-defined function (UDF). The effects of the immersion depth, the width of the chamber, and the thickness of walls on the energy conversion efficiency were examined both in theoretical and numerical manners, and the comparison of the results of these two manners showed a good agreement. The performances of the OWC devices influenced by the incident wave amplitudes were investigated with the help of the numerical model. Results showed that the bandwidth of highly-efficient frequencies narrowed with the increase of the immersion depth, and the peak shifted to the low frequency region. The increase of walls’ thickness resulted in the decrease of energy conversion efficiency in the high frequency region, while having little effect on the low frequency region. The bandwidth of highly-efficient frequencies widened with the increase of the chamber width, and the peak shifted to the low frequency region. In addition, the increase of the incident wave amplitude caused the decrease of the energy conversion efficiency, especially near the resonant frequency.

Key words: oscillating water column (OWC) wave energy device    computational fluid dynamics    potential flow theory    matched eigenfunction expansion method    wave energy conversion efficiency
收稿日期: 2018-01-30 出版日期: 2019-02-21
CLC:  O 352  
通讯作者: 邓争志     E-mail: hanghuihu@zju.edu.cn;zzdeng@zju.edu.cn
作者简介: 胡杭辉(1991—),男,硕士生,从事振荡水柱式波浪能转换研究. orcid.org/0000-0002-6743-7624. E-mail: hanghuihu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡杭辉
邓争志
姚炎明
赵西增

引用本文:

胡杭辉,邓争志,姚炎明,赵西增. 离岸式振荡水柱波能装置的理论及数值研究[J]. 浙江大学学报(工学版), 2019, 53(2): 325-335.

Hang-hui HU,Zheng-zhi DENG,Yan-ming YAO,Xi-zeng ZHAO. Theoretical and numerical studies of off-shore oscillating water column wave energy device. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 325-335.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.016        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/325

图 1  离岸式振荡水柱波能转换装置示意图
图 2  单位宽度入射波波能通量的时程曲线
图 3  PTO处捕获的波能曲线
图 4  波浪-振荡水柱波能转换装置水槽数值模型示意图
波况 λ/m T/s 波况 λ/m T/s
1 9.8 2.51 6 18.9 3.48
2 11.7 2.74 7 20.0 3.59
3 12.9 2.88 8 21.4 3.71
4 14.0 3.00 9 23.8 3.92
5 16.5 3.26 10 33.7 4.76
表 1  波能转换效率数值模拟验证中的不同入射波况
图 5  振荡水柱波能转换装置气室及附近的水面波动与流场图
图 6  水位监测点位置示意图
图 8  振荡水柱波能转换装置气室内的压强与PTO出口流速
图 7  振荡水柱波能转换装置前、中、后方的波面升沉曲线
图 9  振荡水柱波能转换装置气室内压强、PTO出口流速以及波能捕获量的时程曲线
图 10  不同波浪频率下震荡水柱波能转换装置的能量转换效率
图 11  不同波浪频率下反射系数和透射系数
图 12  不同波浪频率下各组成部分的能量占比
图 13  不同墙体吃水深度下波能转换效率随入射波频率变化
图 14  不同墙体厚度下波能转换效率随入射波频率变化
图 15  不同气室宽度下波能转换效率随入射波频率的变化
图 16  不同波幅下波能转换效率随入射波频率的变化
图 17  不同入射波波幅下振荡水柱波能转换装置底部附近流场、涡量分布
图 18  不同波幅下的入射波频率谱
1 王传崑, 卢苇. 海洋能资源分析方法及储量评估[M]. 北京: 海洋出版社, 2009: 1-17.
2 EVANS D V The oscillating water column wave-energy device[J]. IMA Journal of Applied Mathematics, 1978, 22 (4): 423- 433
doi: 10.1093/imamat/22.4.423
3 FALNES J Radiation impedance matrix and optimum power absorption for interacting oscillators in surface waves[J]. Applied Ocean Research, 1980, 2 (2): 75- 80
doi: 10.1016/0141-1187(80)90032-2
4 EVANS D V Wave-power absorption by systems of oscillating surface pressure distributions[J]. Journal of Fluid Mechanics, 1982, 114 (1): 481- 499
5 EVANS D V, PORTER R Hydrodynamic characteristics of an oscillating water column device[J]. Applied Ocean Research, 1995, 17 (3): 155- 164
doi: 10.1016/0141-1187(95)00008-9
6 AMBLI N, BONKE K, MALMO O, et al. The Kvaerner multi resonant OWC [C]// Proceedings of the 2nd International Symposium on Wave Energy Utilization. Norway: [s. n. ], 1982: 275-295.
7 梁贤光, 孙培亚, 游亚戈 汕尾100 kW波力电站气室模型性能试验[J]. 海洋工程, 2003, 21 (1): 113- 116
LIANG Xian-guang, SUN Pei-ya, YOU Ya-ge Performance experiment of Shanwei 100 kW wave power station’s air-room[J]. The Ocean Engineering, 2003, 21 (1): 113- 116
doi: 10.3969/j.issn.1005-9865.2003.01.020
8 史宏达, 杨国华, 刘臻, 等 新型沉箱防波堤兼作岸式OWC波能装置的设计及稳定性研究[J]. 中国海洋大学学报: 自然科学版, 2010, 40 (9): 142- 146
SHI Hong-da, YANG Guo-hua, LIU Zhen, et al Study on new caisson breakwater as OWC[J]. Periodical of Ocean University of China, 2010, 40 (9): 142- 146
9 史宏达, 焦建辉, 刘臻, 等. 不规则波作用下OWC沉箱气室捕能效果研究[J]. 中国海洋大学学报: 自然科学版, 2012, 42(增1): 147-154.
SHI Hong-da, JIAO Jian-hui, LIU Zhen, et al. Study on capture effect of air chamber of caisson breakwater as OWC under irregular waves [J]. Periodical of Ocean University of China, 2012, 42(Suppl. 1): 147-154.
10 YOU Y Hydrodynamic analysis on wave power devices in near-shore zones[J]. Journal of Hydrodynamic, Series B, 1993, 5 (3): 42- 54
11 史宏达, 李海锋, 刘臻 基于VOF模型的OWC气室波浪场数值分析[J]. 中国海洋大学学报: 自然科学版, 2009, 39 (3): 526- 530
SHI Hong-da, LI Hai-feng, LIU Zhen Numerical analysis of wave field in OWC chamber using VOF model[J]. Periodical of Ocean University of China, 2009, 39 (3): 526- 530
12 宁德志, 石进, 滕斌, 等 岸式振荡水柱波能转换装置的数值模拟[J]. 哈尔滨工程大学学报, 2014, (7): 789- 794
NING De-zhi, SHI Jin, TENG Bin, et al Numerical simulation of a land-based oscillating water column wave energy conversion device[J]. Journal of Harbin Engineering University, 2014, (7): 789- 794
13 NING D Z, SHI J, ZOU Q P, et al Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method)[J]. Energy, 2015, 83: 177- 188
doi: 10.1016/j.energy.2015.02.012
14 KAMATH A, BIHS H, ARNTSEN ? A Numerical modeling of power take-off damping in an oscillating water column device[J]. International Journal of Marine Energy, 2015, 10: 1- 16
doi: 10.1016/j.ijome.2015.01.001
15 LUO Y, NADER JR, COOPER P, et al Nonlinear 2D analysis of the efficiency of fixed oscillating water column wave energy converters[J]. Renewable Energy, 2014, 64 (2): 255- 265
16 WANG R, NING D, ZHANG C, et al Nonlinear and viscous effects on the hydrodynamic performance of a fixed OWC wave energy converter[J]. Coastal Engineering, 2018, 131: 42- 50
doi: 10.1016/j.coastaleng.2017.10.012
17 DENG Z, HUANG Z, LAW A W K Wave power extraction by an axisymmetric oscillating-water-column converter supported by a coaxial tube- sector-shaped structure[J]. Applied Ocean Research, 2013, 42 (4): 114- 123
18 SARMENTO A J N A, DE O FALCA A F Wave generation by an oscillating surface-pressure and its application in wave-energy extraction[J]. Journal of Fluid Mechanics, 1985, 150: 467- 485
doi: 10.1017/S0022112085000234
19 乔方利. 中国区域海洋学: 物理海洋学[M]. 北京: 海洋出版社, 2012: 389-397.
20 LUO Y, WANG Z, PENG G, et al Numerical simulation of a heave-only floating OWC (oscillating water column) device[J]. Energy, 2014, 76: 799- 806
doi: 10.1016/j.energy.2014.08.079
[1] 刘桓龙,谢迟新,李大法,王家为. 齿轮箱飞溅润滑流场分布和搅油力矩损失[J]. 浙江大学学报(工学版), 2021, 55(5): 875-886.
[2] 周昊,张昆,李亚威,张佳凯. 采用动网格技术的煤粉-玉米秸秆掺烧飞灰沉积数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1139-1147.
[3] 柯世堂,余文林,徐璐,杜凌云,余玮,杨青. 风雨下考虑偏航效应风力机流场及气动载荷[J]. 浙江大学学报(工学版), 2019, 53(10): 1936-1945.
[4] 张欣, 张天航, 黄志义, 张驰, 康诚, 吴珂. 分叉隧道分流局部损失特性及流动特征[J]. 浙江大学学报(工学版), 2018, 52(3): 440-445.
[5] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[6] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[7] 李梦暄, 吴价, 郑水英, 应光耀, 刘淑莲. 不同轴瓦结构滑动轴承-转子系统的稳定性[J]. 浙江大学学报(工学版), 2017, 51(11): 2239-2248.
[8] 郭轶楠, 雷刚, 王天祥, 王凯, 孙大明. Taconis热声振荡的数值模拟[J]. J4, 2014, 48(2): 327-333.
[9] 杨茂,徐珊珊. 耦合运动的襟翼-翼型气动特性数值仿真[J]. J4, 2014, 48(1): 149-153.
[10] 罗尧治,孙斌. 建筑物周围风致静压场的风洞试验及数值模拟[J]. J4, 2013, 47(7): 1148-1156.
[11] 孟庆龙, 王元. 基于CFD的空间场温度系统建模与控制[J]. J4, 2012, 46(8): 1478-1484.
[12] 刘联鋆, 郝志勇, 钱欣怡. 空滤器滤芯声学特性的仿真方法[J]. J4, 2012, 46(10): 1784-1789.
[13] 朱燕群, 周劲松, 何胜, 等. 煤粉燃烧过程中汞析出过程的数值模拟[J]. J4, 2009, 43(5): 942-947.
[14] 沈明卫 郝飞麟. 供水压力对穿孔管布水系统布水均匀性的影响[J]. J4, 2008, 42(6): 1085-1088.
[15] 熊树生 周文华 张朝山 何文华 陈理 程超. 发动机缸体冷却液流动传热的三维CFD模拟[J]. J4, 2007, 41(7): 1191-1194.