Please wait a minute...
J4  2012, Vol. 46 Issue (10): 1784-1789    DOI: 10.3785/j.issn.1008-973X.2012.10.008
机械与能源工程     
空滤器滤芯声学特性的仿真方法
刘联鋆, 郝志勇, 钱欣怡
浙江大学 能源工程系, 浙江 杭州 310027
Simulation methods for acoustical characteristics of
air-cleaner filter element
LIU Lian-yun, HAO Zhi-yong, QIAN Xin-yi
Department of Power Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

 通过实验测量装有滤芯的滤芯安置装置的消声量,结合声学有限元仿真方法,确定滤芯的声学特性参数.结果显示,采用有限元法可以用来分析滤芯声学特性.应用计算流体动力学(CFD)法计算不带滤芯和带滤芯时滤芯安置装置及空滤器的消声量,不带滤芯时采用CFD法得到的计算结果与测量结果吻合良好,带滤芯时采用CFD法得到的计算结果比有限元法计算结果误差更大.研究采用有限元法和CFD法分析滤芯声学特性时的特点,提出基于CFD法的提取和设置滤芯声学特性参数的工程方法.

Abstract:

The noise reduction of the filter-setting equipment with a filter element in it was measured to determine the acoustical parameters of the filter element, by combining with finite element method (FEM). Results show that FEM can be used to analyze the acoustical properties of the filter element. A computational fluid dynamics (CFD) approach was employed to calculate noise reductions of both the filter-equipment and an air-cleaner with and without the filter element. The CFD-calculated results agreed well with the measured results when the filter element was not installed. However, when the filter element was installed, the CFD-calculated result showed greater error than the FEM-calculated results. Features of the FEM and CFD approach of analyzing acoustical properties of the filter element were analyzed. A CFD-based engineering approach was proposed to determine and set acoustical parameters of a filter element.

出版日期: 2012-10-01
:  TK 402  
基金资助:

浙江省科技厅公益技术研究工业资助项目(2010C31G2010175);国家“十二五”科技支撑资助项目(2011BAE22B05).

通讯作者: 郝志勇,男,教授.     E-mail: haozy@zju.edu.cn
作者简介: 刘联鋆(1988—),男,博士生,从事进排气系统CAE分析和优化设计的研究. E-mail: liulianyun1988@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘联鋆, 郝志勇, 钱欣怡. 空滤器滤芯声学特性的仿真方法[J]. J4, 2012, 46(10): 1784-1789.

LIU Lian-yun, HAO Zhi-yong, QIAN Xin-yi. Simulation methods for acoustical characteristics of
air-cleaner filter element. J4, 2012, 46(10): 1784-1789.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.10.008        http://www.zjujournals.com/eng/CN/Y2012/V46/I10/1784

[1] 方丹群.空气动力性噪声与消声器[M].北京:科学出版社,1978: 110-120.
[2] DELANY M E, BAZLEY E N. Acoustical properties of fibrous absorbent materials [J]. Applied Acoustics, 1970, 3(2): 105-116.
[3] UTSUNO H, TANAKA T, FUJIKAWA T. Transfer function method for measuring characteristic impedance and propagation constant of porous materials [J]. Journal of Acoustical Society of America, 1989, 86(2): 637-643.
[4] ALLARD J F, ATALLA N. Propagation of sound in porous material: modeling sound absorbing materials [M]. New York: Wiley, 2009: 20-26.
[5] ATSM C52203, Standard test method for airflow resistance of acoustical materials [S]. Philadelphia: [s.n.], 2003.
[6] REN M, JACOBSEN F. A method of measuring dynamic the flow resistance and reactance of porous materials [J]. Applied Acoustics, 1993, 39(4): 265-276.
[7] 贾维新.发动机结构噪声和进气噪声的数字化仿真及优化设计研究[D].杭州:浙江大学,2008: 129-153.
JIA Weixing. Research on simulation of structrual noise  / intake noise and optimization design [D]. Hangzhou: Zhejiang University, 2008: 129-153.
[8] 金岩,郝志勇.针对通过噪声的空滤器声学特性研究与改进[J].浙江大学学报:工学版,2006,40(8): 1143-1145.
JIN Yan, HAO Zhiyong. Investigation and improvement of airin filter acoustic performance towards passby noise [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(8): 1143-1145.
[9] MEHDIZADEH O Z, PARASCHIVOIU M. A threedimensional finite element approach for predicting the transmission loss in mufflers and silencers with no mean flow [J]. Applied Acoustics, 2005, 66(8): 902-918.
[10] LIU Chi, HAO Zhiyong, CHEN Xingrui. Optimal design of acoustic performance for automotive aircleaner [J]. Applied Acoustics, 2010, 71(5): 431-438.
[11] 徐航手,季振林,康钟绪.抗性消声器传递损失预测的三维时域计算方法[J].振动与冲击,2010, 29(4): 107-110.
XU Hangshou, JI Zhenlin, KANG Zhongxu. Threedimensional timedomain computational approach for predicting transmission loss of reactive silencers [J]. Journal of Vibration and Shock, 2010, 29(4): 107-110.
[12] BROATCH A, MARGOT X, GIL A. A CFD approach to the computation of the acoustic response of exhaust mufflers [J]. Journal of Computational Acoustics, 2005, 13(2): 301-316.
[13] 李增刚. SYSNOISE Rev5.6 详解[M].北京:国防工业出版社,2005: 75-79.
[14] MIDDELBERG J M, BARBER T J, LEONG S S. CFD analysis of the acoustic and mean flow performance of simple expansion chamber mufflers [J]. Proceedings of IMECE04. Anaheim: [s. n.], 2004: 151-156.

[1] 李一民,郝志勇,杜极生. 发动机曲轴与正时系耦合动力学研究[J]. J4, 2013, 47(9): 1650-1657.
[2] 李一民, 郝志勇, 叶慧飞. 柴油机正时齿轮系动力学特性分析[J]. J4, 2012, 46(8): 1472-1477.
[3] 李一民,郝志勇,曾小春. 考虑油膜润滑的连杆有限元分析[J]. J4, 2012, 46(7): 1233-1237.
[4] 李佳, 刘震涛, 刘忠民, 谭永南, 俞小莉. 空气滤清器流动过程仿真与试验分析[J]. J4, 2012, 46(2): 327-332.
[5] 肖宝兰, 俞小莉, 韩松, 陆国栋, 夏立峰. 基于神经网络的换热器翅片参数灵敏度分析[J]. J4, 2011, 45(1): 122-125.
[6] 肖宝兰, 俞小莉,韩松,陆国栋,夏立峰. 翅片参数对车用中冷器流动传热性能的影响[J]. J4, 2010, 44(11): 2164-2168.
[7] 肖宝兰, 俞小莉, 钟勋, 韩松, 夏立峰. 纳米流体流动传热性能的实验与模拟研究[J]. J4, 2010, 44(6): 1149-1154.