Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (5): 1035-1043    DOI: 10.3785/j.issn.1008-973X.2022.05.021
电子与通信工程     
单片集成谐振式升压转换器设计
刘子恒(),孟凡易*(),王晨菲,马凯学
天津大学 微电子学院,天津 300072
Monolithic integrated resonant boost converter design
Zi-heng LIU(),Fan-yi MENG*(),Chen-fei WANG,Kai-xue MA
School of Microelectronics, Tianjin University, Tianjin 300072, China
 全文: PDF(1539 KB)   HTML
摘要:

为了解决高频谐振功率转换器功率密度较低的问题,提出基于绝缘体上硅(SOI)工艺平台和氮化镓(GaN)功率晶体管的三维集成的单开关全谐振升压转换器,开关频率为500 MHz. 转换器主体采用传统Class-E放大器的衍生电路结构?并联式Class-E拓扑,栅极驱动器采用单管谐振式驱动拓扑. 转换器中的谐振电感元件采用SOI工艺中提供的平面螺旋电感实现,谐振电容元件采用GaN功率晶体管的米勒寄生电容实现,硅基芯片与GaN芯片通过三维倒装技术连接. 围绕电路参数设计、谐振元件的实现和版图结构设计进行详细分析. 实验结果显示,当输入电压为12 V时,片上转换器的最高功率密度为1.481 W/mm2,满载效率为60%,最高效率为89%. 本设计为实现高功率密度、高集成度的功率转换器提供了新思路.

关键词: 谐振式功率转换器三维集成电路设计功率密度转换效率    
Abstract:

A three-dimensional integrated single-switch full-resonant boost converter was proposed based on silicon on insulator (SOI) process platform and gallium nitride (GaN) power transistors, in order to solve the problem of low power density of resonant power converters operating at high frequency. The switching frequency was 500 MHz. The main body of the converter adopted the derivative circuit structure of the traditional Class-E amplifier, i. e. parallel Class-E topology, and the gate driver adopted the single-switch resonant driving topology. The resonant inductance components in the converter were realized by the planar spiral inductor provided in the SOI process, the resonant capacitance components were realized by the Miller parasitic capacitance of the GaN power transistor, and the silicon-based chip and the GaN chip were connected by three-dimensional flip-chip technology. A detailed analysis was carried out around the design of circuit parameters, the realization of resonant components and the design of layout structure. Experimental results showed that when the input voltage was 12 V, the highest power density of the on-chip converter was 1.481W/mm2, the full-load efficiency was 60%, and the highest efficiency was 89%. This design provides a new idea for realizing power converter with high power density and high integration.

Key words: resonant power converter    3D integration    circuit design    power density    conversion efficiency
收稿日期: 2021-12-12 出版日期: 2022-05-31
CLC:  TN 432  
基金资助: 国家重点研发计划资助项目(2019YFB1803200)
通讯作者: 孟凡易     E-mail: zihengliu@tju.edu.cn;mengfanyi@tju.edu.cn
作者简介: 刘子恒(1997—),男,硕士生,从事电源管理集成电路研究. orcid.org/0000-0001-6417-4382. E-mail: zihengliu@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘子恒
孟凡易
王晨菲
马凯学

引用本文:

刘子恒,孟凡易,王晨菲,马凯学. 单片集成谐振式升压转换器设计[J]. 浙江大学学报(工学版), 2022, 56(5): 1035-1043.

Zi-heng LIU,Fan-yi MENG,Chen-fei WANG,Kai-xue MA. Monolithic integrated resonant boost converter design. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1035-1043.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.05.021        https://www.zjujournals.com/eng/CN/Y2022/V56/I5/1035

图 1  对称式螺旋电感器PSI2版图以及PSI2的电感与品质因数随频率变化示意图
图 2  对称式螺旋电感器PSI3版图以及PSI3的电感与品质因数随频率变化示意图
图 3  硅基SOI工艺结构截面图与GaN器件EPC2036的尺寸信息
图 4  全谐振式并联Class-E转换器原理图
图 5  谐振驱动器在不同电源电压下输出电压的最高摆幅
图 6  谐振网络的电压增益和谐振电流幅值随f2/f0的变化
图 7  并联Class-E转换器逆变级电路分析模型
图 8  谐振网络L1-C1谐振频率低于开关频率时功率管开启瞬间的VDS与L1-C1特征阻抗的关系
图 9  谐振网络L1-C1谐振频率高于开关频率时功率管开启瞬间的VDS与L1-C1特征阻抗的关系
变量 数值 备注
Lr/nH 2.81 PSI2电感器,R = 400 μm
L1/nH 8.1 PSI3电感器,R = 500 μm
L2/nH 1.73 PSI2电感器,R = 475 μm
C1/pF 75 GaN HEMT寄生电容
C2/pF 75 GaN HEMT寄生电容
表 1  驱动级、功率级电路元件取值与选型
(mA·μm?1)
金属层 Amax
Tm=85 ℃ Tm=110 ℃ Tm=125 ℃
M1 5.88 1.34 1.14
M2、M3 7.94 1.81 1.14
M4、M5 77.48 17.63 11.08
Pad 31.64 7.20 3.23
表 2  各金属层在85、110、125 ℃时的最大电流线密度
图 10  转换器版图的布局以及样貌
图 11  不同负载电阻下仿真得到的Vgs电压与VDS电压波形
图 12  不同负载下的输出电压以及输出电压纹波
图 13  转换器输出电压与转换效率随负载的变化
图 14  转换器功耗构成以及占比
设计 f/MHz 拓扑 VOUT/VIN 工艺 Pden/(W·mm?2 A/mm2 η/%
本研究 500.0 并联Class-E 12.0 V/20.0 V 130 nm SOI+GaN 1.480 9.00 60
Burkhart等[5] 75.0 并联Class-E 12.0 V/30.0 V PCB 0.012 ? 87
Liu等[15] 300.0 并联Class-E 12.0 V/18.0 V IPD+GaN 0.048 92.00 47
Pilsoon等[1] 680.0 开关电感 12.0 V/20.0 V GaN-on-SiC 0.240 9.00 39
Mclaughln等[19] 47.5 开关电容 4.4 V/2.2 V 180 nm CMOS 0.097 8.93 75
Nghia等[20] 450.0 开关电容 1.2 V/0.6 V 65 nm CMOS 0.730 0.65 78
表 3  本研究所提出的设计与相关设计的指标对比
1 PILSOON C, UJWAL R, BOON C C, et al A fully integrated inductor-based GaN boost converter with self-generated switching signal for vehicular applications[J]. IEEE Transactions on Power Electronics, 2016, 31 (8): 5365- 5368
doi: 10.1109/TPEL.2016.2518183
2 JIANG J M, LIU X, KI W H, et al Circuit techniques for high efficiency fully-integrated switched-capacitor converters[J]. IEEE Transactions on Circuits and Systems II-Express Briefs, 2021, 68 (2): 556- 561
doi: 10.1109/TCSII.2020.3046514
3 谭平平, 桂成东, 姜立铭, 等 基于GaN器件的固态射频源应用研究[J]. 电源学报, 2020, 18 (4): 116- 122
TAN Ping-ping, GUI Cheng-dong, JIANG Li-ming, et al Research on applications of solid-state RF power supply based on GaN devices[J]. Journal of Power Supply, 2020, 18 (4): 116- 122
4 WANG Y J, LI F, QIU Y P, et al A single-stage LED driver based on flyback and modified Class-E resonant converters with low-voltage stress[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (11): 8463- 8473
doi: 10.1109/TIE.2018.2890502
5 BURKHART J M, ROMAN K, PERREAULT D J Design methodology for a very high frequency resonant boost converter[J]. IEEE Transactions on Power Electronics, 2013, 28 (4): 1929- 1937
doi: 10.1109/TPEL.2012.2202128
6 LI Y, RUAN X B, ZHANG L, et al Variable switching frequency ON-OFF control for Class-E DC-DC converter[J]. IEEE Transactions on Power Electronics, 2019, 34 (9): 8859- 8870
doi: 10.1109/TPEL.2018.2888926
7 LEE K H, EUIHOON C, HAN Y S, et al A family of high frequency single-switch DC-DC converters with low switch voltage stress based on impedance networks[J]. IEEE Transactions on Power Electronics, 2017, 32 (4): 2913- 2924
doi: 10.1109/TPEL.2016.2580154
8 KERUI L, TAN S C, ADRIAN I, et al. DC-shifted harmonics-boosted resonant DC-DC converter with high-step-up conversion radio with ZVS over the full load range [C]// Applied Power Electronics Conference and Exposition (APEC). New Orleans: IEEE, 2019: 1307-1312.
9 ALESSANDRO N, GABRIELE A, GIORGIO C, et al. A 1.25 GHz fully integrated DC-DC converter using electromagnetically coupled Class-D LC oscillators [C]// 2021 IEEE International Solid-State Circuits Conference: Digest of Technical Papers. San Francisco: IEEE, 2021: 260-262.
10 AMIN S S, MERCIER P P A fully integrated Li-ion-compatible hybrid four-level DC-DC converter in 28-nm FDSOI[J]. Journal of Soild-State Circuits, 2019, 54 (3): 720- 732
doi: 10.1109/JSSC.2018.2880183
11 RENZ P, KAUFMANN M, LUEDERS M. A fully integrated 85%-peak-efficiency hybrid multi ratio resonant DC-DC converter with 3.0 V-to-4.5 V input and 500 μA-to-120 mA load range [C]// 2019 IEEE International Solid-State Circuits Conference: Digest of Technical Papers. San Francisco: IEEE, 2019: 156-158.
12 JIA T, GU Y A fully integrated buck regulator with 2-GHz resonant switching for low-power applications[J]. IEEE Journal of Solid-State Circuits, 2018, 53 (9): 2663- 2674
doi: 10.1109/JSSC.2018.2840513
13 MEYER C D, BEDAIR S S, MORGAN B C, et al. High-inductance-density, air-core, power inductors, and transformers designed for operation at 100-500 MHz [J] IEEE Transactions on Magnetics, 2010, 46(6): 2236-2239.
14 LIU S K, ZHU L, FREDERIC A, et al Physical models of planar spiral inductor integrated on the high-resistivity and trap-rich silicon-on-insulator substrates[J]. IEEE Transactions on Electron Devices, 2017, 64 (7): 2775- 2781
doi: 10.1109/TED.2017.2700022
15 LIU M J, SHAWNS H H A miniature 300-MHz resonant DC-DC converter with GaN and CMOS integrated in IPD technology[J]. IEEE Transactions on Power Electronics, 2018, 33 (11): 9656- 9668
doi: 10.1109/TPEL.2017.2788946
16 EYAL A, DANIEL P, KEVIN T, et al Hybrid CMOS/GaN 40-MHz maximum 20-V input DC-DC multiphase buck converter[J]. IEEE Journal of Solid-State Circuits, 2017, 52 (6): 1618- 1627
doi: 10.1109/JSSC.2017.2672986
17 MENG F Y, DON D, LIU B, et al Heterogeneous integration of GaN and BCD technologies and its applications to high conversion-ratio DC-DC boost converter IC[J]. IEEE Transactions on Power Electronics, 2019, 34 (3): 1993- 1996
doi: 10.1109/TPEL.2018.2859419
18 EPC2036-enhancement mode power transistor, EPC2036 datasheet. [EB/OL]. [2021-12-01]. https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2036_datasheet.pdf.
19 MCLAUGHLIN P H, XIA Z, STAUTH J T. A fully integrated resonant switched-capacitor converter with 85.5% efficiency at 0.47 W using on-chip dual-phase merged-LC resonator [C]// 2020 IEEE International Solid-State Circuits Conference: Digest of Technical Papers. San Francisco: IEEE, 2020: 192-194.
[1] 刘克峰,何嘉保,奚剑雄,何乐年. 自适应死区时间控制的数字控制ACF变换器[J]. 浙江大学学报(工学版), 2021, 55(12): 2365-2372.
[2] 张爱兵,闫文凯,庞丹丹,王保林,王骥. 热电偶臂构型尺寸对环形热电发电器性能的影响[J]. 浙江大学学报(工学版), 2020, 54(5): 947-953.
[3] 胡杭辉,邓争志,姚炎明,赵西增. 离岸式振荡水柱波能装置的理论及数值研究[J]. 浙江大学学报(工学版), 2019, 53(2): 325-335.
[4] 汪鹏君, 李昆鹏, 梅凤娜, 陈耀武. 三值绝热计数器的开关级设计[J]. J4, 2011, 45(8): 1502-1508.
[5] 孟昕, 沈海斌, 严晓浪. MetaHDL: 面向自动推断和参数追踪硬件描述域特定语言[J]. J4, 2010, 44(6): 1079-1085.
[6] 葛海通, 翁延玲, 严晓浪. 一种基于混合SAT求解器的RTL验证方法[J]. J4, 2010, 44(2): 289-293.
[7] 汪鹏君 徐建 杜歆 陈耀武. 基于钟控传输门绝热逻辑电路的绝热FIFO设计[J]. J4, 2008, 42(8): 1294-1299.