电子、通信与自动控制技术 |
|
|
|
|
基于多级连续编码与解码的图像超分辨率重建算法 |
宋昭漾1,2,3( ),赵小强1,2,3,*( ),惠永永1,2,3,蒋红梅1,2,3 |
1. 兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050 2. 甘肃省工业过程先进控制重点实验室,甘肃 兰州 730050 3. 兰州理工大学 国家级电气与控制工程实验教学中心,甘肃 兰州 730050 |
|
Image super-resolution reconstruction algorithm based on multi-level continuous encoding and decoding |
Zhao-yang SONG1,2,3( ),Xiao-qiang ZHAO1,2,3,*( ),Yong-yong HUI1,2,3,Hong-mei JIANG1,2,3 |
1. College of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2. Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou 730050, China 3. National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou University of Technology, Lanzhou 730050, China |
引用本文:
宋昭漾,赵小强,惠永永,蒋红梅. 基于多级连续编码与解码的图像超分辨率重建算法[J]. 浙江大学学报(工学版), 2023, 57(9): 1885-1893.
Zhao-yang SONG,Xiao-qiang ZHAO,Yong-yong HUI,Hong-mei JIANG. Image super-resolution reconstruction algorithm based on multi-level continuous encoding and decoding. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1885-1893.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.020
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1885
|
20 |
ZHANG Y, TIAN Y, KONG Y, et al. Residual dense network for image super-resolution [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2472-2481.
|
21 |
ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks [C]// European Conference on Computer Vision. [S.l.]: Springer, 2018: 294-301.
|
22 |
CHEN H, GU J, ZHANG Z. Attention in attention network for image super-resolution [EB/OL]. [2022-04-21]. https://arxiv.org/pdf/2104.09497.pdf.
|
23 |
AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 126-135.
|
24 |
BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding [C]// Proceedings British Machine Vision Conference. Surrey: [s.n.], 2012: 1-10.
|
25 |
ZEYDE R, ELAD M, PROTTER M, et al. On single image scale-up using sparse-representations [C]// International Conference on Curves and Surfaces. [S.l.]: Springer, 2010: 711-730.
|
26 |
MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics [C]// Proceedings of the IEEE International Conference on Computer Vision. Vancouver: IEEE, 2001: 416-423.
|
27 |
HUANG J, SINGH A, AHUJA N, et al. Single image super-resolution from transformed self-exemplars [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 5197-5206
|
28 |
KINGMA D P, BA J L. ADAM: a method for stochastic optimization [EB/OL]. [2022-04-21]. https://arxiv.org/pdf/1412.6980.pdf.
|
29 |
WANG Z, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612
doi: 10.1109/TIP.2003.819861
|
30 |
HARIS M, SHAKHNAROVICH G, UKITA N Deep back-projection networks for super-resolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (12): 4323- 4337
doi: 10.1109/TPAMI.2020.3002836
|
31 |
LIU J, TANG J, WU G. Residual feature distillation network for lightweight image super-resolution [C]// European Conference on Computer Vision. [S.l.]: Springer, 2020: 41-55.
|
1 |
CHEN H, HE X, QING L, et al Real-world single image super-resolution: a brief review[J]. Information Fusion, 2022, 79: 124- 145
doi: 10.1016/j.inffus.2021.09.005
|
2 |
REBECQ H, RANFTL R, KOLTUN V, et al. Events-to-video: bringing modern computer vision to event cameras [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3857-3866.
|
3 |
WANG Z, JIANG K, YI P, et al Ultra-dense GAN for satellite imagery super-resolution[J]. Neurocomputing, 2020, 398: 328- 373
doi: 10.1016/j.neucom.2019.03.106
|
4 |
LIU H, GU Y, WANG T, et al Satellite video super-resolution based on adaptively spatiotemporal neighbors and nonlocal similarity regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58 (12): 8372- 8383
doi: 10.1109/TGRS.2020.2987400
|
5 |
YUE L, SHEN H, LI J, et al Image super-resolution: the techniques, applications, and future[J]. Signal Processing, 2016, 128: 389- 408
doi: 10.1016/j.sigpro.2016.05.002
|
6 |
DENG L, YU D. Deep learning: methods and applications [M]. [S.l.]: Now Foundations and Trends, 2014: 197-387.
|
7 |
JORDAN M I, MITCHELL T M Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349 (6245): 255- 260
doi: 10.1126/science.aaa8415
|
8 |
LECUN Y, BENGIO Y, HINTON G Deep learning[J]. Nature, 2015, 521: 436- 444
doi: 10.1038/nature14539
|
9 |
ANWAR S, KHAN S, BARNES N A deep journey into super-resolution: a survey[J]. ACM Computing Surveys, 2020, 53 (3): 1- 34
|
10 |
WANG Z, CHEN J, HOI S C H Deep learning for image super-resolution: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (10): 3365- 3387
doi: 10.1109/TPAMI.2020.2982166
|
11 |
SONG Z, ZHAO X, JIANG H Gradual deep residual network for super-resolution[J]. Multimedia Tools and Applications, 2021, 80: 9765- 9778
doi: 10.1007/s11042-020-10152-9
|
12 |
SONG Z, ZHAO X, HUI Y, et al Progressive back-projection network for COVID-CT super-resolution[J]. Computer Methods and Programs in Biomedicine, 2021, 208: 106193
doi: 10.1016/j.cmpb.2021.106193
|
13 |
DONG C, LOY C C, HE K, et al Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38 (2): 295- 307
|
14 |
DONG C, LOY C C, TANG X, et al. Accelerating the super-resolution convolutional neural network [C]// European Conference on Computer Vision. [S.l.]: Springer, 2016: 391-407.
|
15 |
SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883.
|
16 |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1646-1654.
|
17 |
KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1637-1645.
|
18 |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 136-144.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|