机械工程 |
|
|
|
|
基于DL-BiGRU多特征融合的注塑件尺寸预测方法 |
钱庆杰1(),余军合1,*(),战洪飞1,王瑞1,胡健2 |
1. 宁波大学 机械工程与力学学院,浙江 宁波 315211 2. 中机中联工程有限公司第一工业设计研究院,重庆 400039 |
|
Dimension prediction method of injection molded parts based on multi-feature fusion of DL-BiGRU |
Qingjie QIAN1(),Junhe YU1,*(),Hongfei ZHAN1,Rui WANG1,Jian HU2 |
1. Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China 2. The First Industrial Design and Research Institute of CMCU Engineering Co. Ltd, Chongqing 400039, China |
引用本文:
钱庆杰,余军合,战洪飞,王瑞,胡健. 基于DL-BiGRU多特征融合的注塑件尺寸预测方法[J]. 浙江大学学报(工学版), 2024, 58(3): 646-654.
Qingjie QIAN,Junhe YU,Hongfei ZHAN,Rui WANG,Jian HU. Dimension prediction method of injection molded parts based on multi-feature fusion of DL-BiGRU. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 646-654.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.021
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I3/646
|
1 |
CHEN J Y, TSENG C C, HUANG M S. Quality indexes design for online monitoring polymer injection molding [EB/OL]. (2019−08−01). https://doi.org/10.1155/2019/3720127.
|
2 |
CHAREST M, FINN R, DUBAY R. Integration of artificial intelligence in an injection molding process for on-line process parameter adjustment [C]// 2018 Annual IEEE International Systems Conference . Vancouver: IEEE, 2018: 1−6.
|
3 |
OGORODNYK O, LYNGSTAD O V, LARSEN M, et al. Application of machine learning methods for prediction of parts quality in thermoplastics injection molding [C]// Advanced Manufacturing and Automation VIII . Singapore: Springer, 2019: 237−244.
|
4 |
OGORODNYK O, LYNGSTAD O V, LARSEN M, et al. Prediction of width and thickness of injection molded parts using machine learning methods [M]// KISHITA Y, MATSUMOTO M, INOUE M, et al. EcoDesign and sustainability I: products, services, and business models . Singapore: Springer, 2021: 455−469.
|
5 |
YIN F, MAO H, HUA L, et al Back propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding[J]. Materials and design, 2011, 32 (4): 1844- 1850
doi: 10.1016/j.matdes.2010.12.022
|
6 |
GÜLÇÜR M, WHITESIDE B A study of micromanufacturing process fingerprints in micro-injection moulding for machine learning and Industry 4.0 applications[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115 (5/6): 1943- 1954
|
7 |
宋建, 陈广森, 陈敬福 基于特征选择和贝叶斯优化 LightGBM 的注塑制品尺寸预测[J]. 工程塑料应用, 2021, 49 (8): 54- 60 SONG Jian, CHEN Guangsen, CHEN Jingfu Size prediction of injection molded products based on feature selection and bayesian optimized LightGBM[J]. Engineering Plastic Application, 2021, 49 (8): 54- 60
doi: 10.3969/j.issn.1001-3539.2021.08.010
|
8 |
宋建, 王文龙, 李东, 等 基于Stacking集成学习的注塑件尺寸预测方法[J]. 华南理工大学学报:自然科学版, 2022, 50 (6): 19- 26 SONG Jian, WANG Wenlong, LI Dong, et al Injection molding part size prediction method based on Stacking ensemble learning[J]. Journal of South China University of Technology: Natural Science Edition, 2022, 50 (6): 19- 26
|
9 |
NIAN S C, FANG Y C, HUANG M S In-mold and machine sensing and feature extraction for optimized IC-tray manufacturing[J]. Polymers, 2019, 11 (8): 1348
doi: 10.3390/polym11081348
|
10 |
HUANG M S Cavity pressure based grey prediction of the filling-to-packing switchover point for injection molding[J]. Journal of Materials Processing Technology, 2007, 183 (2/3): 419- 424
|
11 |
FARAHANI S, BROWM N, LOFTIS J, et al Evaluation of in-mold sensors and machine data towards enhancing product quality and process monitoring via Industry 4.0[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105: 1371- 1389
doi: 10.1007/s00170-019-04323-8
|
12 |
HOTAIT H, CHIEMENTIN X, MOUCHAWEH M S, et al Monitoring of ball bearing based on improved real-time OPTICS clustering[J]. Journal of Signal Processing Systems, 2021, 93: 221- 237
doi: 10.1007/s11265-020-01571-w
|
13 |
CHEN Z, WU M, ZHAO R, et al Machine remaining useful life prediction via an attention-based deep learning approach[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (3): 2521- 2531
doi: 10.1109/TIE.2020.2972443
|
14 |
FENG T T, GUO L, GAO H, et al A new time-space attention mechanism driven multi-feature fusion method for tool wear monitoring[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120: 5633- 5648
doi: 10.1007/s00170-022-09032-3
|
15 |
WICK C, EHRIG F, SCHUSTER G. Data driven injection moulding [C]// Advances in Polymer Processing 2020: Proceedings of the International Symposium on Plastics Technology . Heidelberg: Springer, 2020: 128−136.
|
16 |
陈金伟, 林旭光 注塑成型模腔压力监测技术及其应用[J]. 塑料科技, 2011, 39 (8): 59- 62 CHEN Jinwei, LIN Xuguang Cavity pressure measurement technology during injection molding process and its applications[J]. Plastic Technology, 2011, 39 (8): 59- 62
doi: 10.3969/j.issn.1005-3360.2011.08.006
|
17 |
CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing . Doha: Association for Computational Linguistics, 2014: 1724−1734.
|
18 |
SHE D, JIA M A BiGRU method for remaining useful life prediction of machinery[J]. Measurement, 2021, 167: 108277
doi: 10.1016/j.measurement.2020.108277
|
19 |
HAN W, NAN L, SU M, et al Research on the prediction method of centrifugal pump performance based on a double hidden layer BP neural network[J]. Energies, 2019, 12 (14): 2709
doi: 10.3390/en12142709
|
20 |
于志刚, 辛小军, 范远洪, 等. 基于双层GRU神经网络的油田注水预测方法研究 [J]. 化工自动化及仪表, 2022, 49(01): 41-46. YU Zhigang, XIN Xiaojun, FAN Yuanhong, et al. Research on oilfield water injection prediction method based on double hidden layer GRU model [J]. Chemical Automation and Instrumentation , 2022, 49(1): 41−46.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|