机械工程 |
|
|
|
|
基于循环神经网络的双目视觉物体6D位姿估计 |
杨恒1(),李卓1,康忠元2,田兵1,董青1 |
1. 太原科技大学 机械工程学院,山西 太原 030024 2. 重庆市农业机械化学校 机械工程学院,重庆 402160 |
|
Binocular vision object 6D pose estimation based on circulatory neural network |
Heng YANG1(),Zhuo LI1,Zhong-yuan KANG2,Bing TIAN1,Qing DONG1 |
1. College of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 2. College of Mechanical Engineering, Chongqing Agricultural Mechanization School, Chongqing 402160, China |
引用本文:
杨恒,李卓,康忠元,田兵,董青. 基于循环神经网络的双目视觉物体6D位姿估计[J]. 浙江大学学报(工学版), 2023, 57(11): 2179-2187.
Heng YANG,Zhuo LI,Zhong-yuan KANG,Bing TIAN,Qing DONG. Binocular vision object 6D pose estimation based on circulatory neural network. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2179-2187.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.005
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2179
|
1 |
SUNDERMEYER M, MARTON Z C, DURNER M, et al Augmented autoencoders: implicit 3D orientation learning for 6D object detection[J]. International Journal of Computer Vision, 2020, 128: 714- 729
doi: 10.1007/s11263-019-01243-8
|
2 |
WADIM K , FABIAN M , FEDERICO T, et al. SSD-6D: making RGB-based 3D detection and 6D pose estimation great again [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1521–1529.
|
3 |
DI Y, MANHARDT F, WANG G, et al. SO-POSE: exploiting self-occlusion for direct 6D pose estimation [C]// International Conference on Computer Vision. Montreal: IEEE, 2021: 12396-12405.
|
4 |
WANG G, MANHARDT F, TOMBARI F, et al. GDR-NET: geometry-guided direct regression network for monocular 6D object pose estimation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Montreal: IEEE, 2021: 1661–16621.
|
5 |
刘城. 手腕型操作中操作者手部的主动视觉追踪方法研究[D]. 武汉: 武汉理工大学, 2020. LIU Cheng. Research on active vision tracking method of operator’s hand in wrist-type operation[D]. Wuhan: Wuhan University of Technology, 2020.
|
6 |
戈振鹏. 基于主动视觉和强化学习的机械臂装配研究[D]. 成都: 电子科技大学, 2022. GE Zhen-peng. Research on robotic assembly based on active vision and reinforcement learning[D]. Chengdu: University of Electronic Technology, 2022.
|
7 |
ZHOU Y, BARNES C, LU J W, et al. On the continuity of rotation representations in neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 3: 5745-5753.
|
8 |
KUNDU A, LI Y, REHG J M. 3D-RCNN: instance-level 3D object reconstruction via render and compare [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 3: 3559–3568.
|
9 |
LI Z G, WANG G, JI X Y. CDPN: coordinates-based disentangled pose network for real time rgb-based 6-DoF object pose estimation [C]// IEEE International Conference on Computer Vision. Seoul: IEEE, 2019. 1: 7678–7687.
|
10 |
VOLODYMYR M, NICOLAS H, ALEX G, et al. Recurrent models of visual attention[C]// Conference and Workshop on Neural Information Processing Systems. Montreal: [s.n.], 2014: 136–145.
|
11 |
JAMIE S, BEN G, CHRISTOPHER Z, et al. Scene coordinate regression forests for camera relocalization in RGB-D images[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 2930-2937.
|
12 |
ADAM P, SAM G, FRANCISCO M, et al. Pytorch: an imperative style, high-performance deep learning library [C]// Advances in Neural Information Processing Systems. [s.l.]: Manning publications, 2019, 5: 8026–8037.
|
13 |
LIU L Y, JIANG H M, HE P C, et al. On the variance of the adaptive learning rate and beyond [C]// International Conference on Learning Representations. Vancouver: [s.n.], 2020.
|
14 |
WAIL M, NICOLAS P, NORBERT K. Multi-view object recognition using view-point invariant shape relations and appearance information [C]// IEEE International Conference on Robotics and Automation. Guangzhou: [s.n.], 2013: 4230–4237.
|
15 |
LI Y, WANG G, JI X Y, et al. Deepim: deep iterative matching for 6D pose estimation[C]// Proceedings of the European Conference on Computer Vision. Munich: [s.n.], 2018: 683-698.
|
16 |
HU Y L, PASCAL F, WANG W, et al. Single-stage 6D object pose estimation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Detroit: IEEE, 2020: 2930-2939.
|
17 |
VINCENT L, FRANCESC M N, PASCAL F. EPnP: an accurate O(N) solution to the PnP problem[J]. International Journal of Computer Vision, 2009, (81): 155–166.
|
18 |
吕成志. 面向复杂场景的目标六自由度姿态估计关键技术研究[D]. 广州: 华南理工大学, 2020. LV Cheng-zhi. Research on key technologies of object six degree of freedom pose estimation for complex scenes[D]. Guangzhou: South China University of Technology, 2020.
|
19 |
YU X, TANNER S, VENKATRAMAN N, et al. POSECNN: a convolutional neural network for 6D object pose estimation in cluttered scenes [C]// Robotics: Science and Systems. Pittsburgh: [s.n.], 2018.
|
20 |
YANN L, JUSTIN C, MATHIEU A, et al. Cosypose: consistent multi-view multi-object 6D pose estimation [C]// European Conference on Computer Vision. Glasgow: [s.n.], 2020: 574–591.
|
21 |
刘建伟, 宋志妍 循环神经网络研究综述[J]. 控制与决策, 2022, 37 (11): 2753- 2768 LIU Jian-wei, SONG Zhi-yan Research on recurrent neural network[J]. Journal of Computer Applications, 2022, 37 (11): 2753- 2768
|
22 |
NIALL M, JESUS M D R, PAUL M. Recurrent convolutional network for video-based person re-identification [C]// IEEE International Conference on Computer Vision. Las Vegas: IEEE, 2016: 1325-1334.
|
23 |
胡代弟, 李锐君. 基于主动视觉的机械表面疲劳损伤裂纹检测[J]. 制造业自动化, 2022, 44(5): 170-174. HU Dai-di, LI Rui-jun. Mechanical surface fatigue damage crack detection based on active vision[J]. Manufacturing Automation. 2022, 44(5) : 170-174.
|
24 |
罗宇. 基于深度学习的目标姿态估计与机械臂抓取研究[D]. 广州: 广东工业大学, 2020. LUO Yu. Research on target attitude estimation and manipulator grab based on deep learning[D]. Guangzhou: Guangdong University of Technology, 2020.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|