交通工程、土木工程 |
|
|
|
|
融合知识图谱的时空多图卷积交通流量预测 |
李劲业( ),李永强*( ) |
浙江工业大学 信息工程学院,浙江 杭州 310023 |
|
Spatial-temporal multi-graph convolution for traffic flow prediction by integrating knowledge graphs |
Jinye LI( ),Yongqiang LI*( ) |
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China |
1 |
陆化普, 李瑞敏 城市智能交通系统的发展现状与趋势[J]. 工程研究——跨学科视野中的工程, 2014, 6 (1): 6- 19 LU Huapu, LI Ruimin Developing trend of ITS and strategy suggestions[J]. Journal of Engineering Studies, 2014, 6 (1): 6- 19
doi: 10.3724/SP.J.1224.2014.00006
|
2 |
NAGY A M, SIMON V Survey on traffic prediction in smart cities[J]. Pervasive and Mobile Computing, 2018, 50: 148- 163
doi: 10.1016/j.pmcj.2018.07.004
|
3 |
周毅, 胡姝婷, 李伟, 等 图神经网络驱动的交通预测技术: 探索与挑战[J]. 物联网学报, 2021, 5 (4): 1- 16 ZHOU Yi, HU Shuting, LI Wei, et al Graph neural network driven traffic prediction technology: review and challenge[J]. Chinese Journal on Internet of Things, 2021, 5 (4): 1- 16
doi: 10.11959/j.issn.2096-3750.2021.00235
|
4 |
LANA I, DEL SER J, VELEZ M, et al Road traffic forecasting: recent advances and new challenges[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 10 (2): 93- 109
doi: 10.1109/MITS.2018.2806634
|
5 |
WANG J, ZHU W, SUN Y, et al An effective dynamic spatiotemporal framework with external features information for traffic prediction[J]. Applied Intelligence, 2021, 51: 3159- 3173
doi: 10.1007/s10489-020-02043-1
|
6 |
ZHANG D, KABUKA M R Combining weather condition data to predict traffic flow: a GRU‐based deep learning approach[J]. IET Intelligent Transport Systems, 2018, 12 (7): 578- 585
doi: 10.1049/iet-its.2017.0313
|
7 |
LI Z, JIN X, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval . Montréal: ACM, 2021: 408–417.
|
8 |
孙赟, 李明涛, 姚晓晖 基于BP神经网络人群流量预测的实现[J]. 中国安全生产科学技术, 2010, 6 (2): 61- 65 SUN Yun, LI Mingtao, YAO Xiaohui Implementation of crowd flow prediction based on BP neural network[J]. Journal of Safety Science and Technology, 2010, 6 (2): 61- 65
|
9 |
AHN J, KO E, KIM E Y. Highway traffic flow prediction using support vector regression and Bayesian classifier [C]// 2016 International Conference on Big Data and Smart Computing . Hong Kong: IEEE, 2016: 239–244.
|
10 |
DAI G, MA C, XU X Short-term traffic flow prediction method for urban road sections based on space–time analysis and GRU[J]. IEEE Access, 2019, 7: 143025- 143035
doi: 10.1109/ACCESS.2019.2941280
|
11 |
PAN B, DEMIRYUREK U, SHAHABI C. Utilizing real-world transportation data for accurate traffic prediction [C]// 2012 IEEE 12th International Conference on Data Mining . Brussels: IEEE, 2012: 595–604.
|
12 |
HAMED M M, AL-MASAEID H R, SAID Z M B Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121 (3): 249- 254
doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
|
13 |
OKUTANI I, STEPHANEDES Y J Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18 (1): 1- 11
doi: 10.1016/0191-2615(84)90002-X
|
14 |
CAI P, WANG Y, LU G, et al A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 21- 34
doi: 10.1016/j.trc.2015.11.002
|
15 |
王博文, 王景升, 朱茵, 等 基于ARMA-SVR的短时交通流量预测模型研究[J]. 公路交通科技, 2021, 38 (11): 126- 133 WANG Bowen, WANG Jingsheng, ZHU Yin, et al Study on short-term traffic volume prediction model based on ARMA-SVR[J]. Journal of Highway and Transportation Research and Development, 2021, 38 (11): 126- 133
|
16 |
KUMAR K, PARIDA M, KATIYAR V K Short term traffic flow prediction for a non urban highway using artificial neural network[J]. Procedia - Social and Behavioral Sciences, 2013, 104: 755- 764
doi: 10.1016/j.sbspro.2013.11.170
|
17 |
YANG B, SUN S, LI J, et al Traffic flow prediction using LSTM with feature enhancement[J]. Neurocomputing, 2019, 332: 320- 327
doi: 10.1016/j.neucom.2018.12.016
|
18 |
HUSSAIN B, AFZAL M K, AHMAD S, et al Intelligent traffic flow prediction using optimized GRU model[J]. IEEE Access, 2021, 9: 100736- 100746
doi: 10.1109/ACCESS.2021.3097141
|
19 |
MA X, DAI Z, HE Z, et al Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17 (4): 818
doi: 10.3390/s17040818
|
20 |
GUO S, LIN Y, LI S, et al Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (10): 3913- 3926
doi: 10.1109/TITS.2019.2906365
|
21 |
ZHENG H, LIN F, FENG X, et al A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (11): 6910- 6920
doi: 10.1109/TITS.2020.2997352
|
22 |
WANG H, ZHANG R, CHENG X, et al Hierarchical traffic flow prediction based on spatial-temporal graph convolutional network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9): 16137- 16147
doi: 10.1109/TITS.2022.3148105
|
23 |
YIN X, WU G, WEI J, et al Deep learning on traffic prediction: methods, analysis, and future directions[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (6): 4927- 4943
|
24 |
ZHAO L, SONG Y, ZHANG C, et al T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (9): 3848- 3858
doi: 10.1109/TITS.2019.2935152
|
25 |
BAI J, ZHU J, SONG Y, et al A3T-GCN: attention temporal graph convolutional network for traffic forecasting[J]. ISPRS International Journal of Geo-Information, 2021, 10 (7): 485
doi: 10.3390/ijgi10070485
|
26 |
LV M, HONG Z, CHEN L, et al Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (6): 3337- 3348
doi: 10.1109/TITS.2020.2983763
|
27 |
ZHU J, HAN X, DENG H, et al KST-GCN: a knowledge-driven spatial-temporal graph convolutional network for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9): 15055- 15065
doi: 10.1109/TITS.2021.3136287
|
28 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the European Semantic Web Conference . [S. l.]: Springer, 2018: 593–607.
|
29 |
DUDEK G Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting[J]. International Journal of Forecasting, 2016, 32 (3): 1057- 1060
doi: 10.1016/j.ijforecast.2015.11.009
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|