计算机技术 |
|
|
|
|
多信息融合的时空图卷积交通流量预测模型 |
孟闯( ),王慧*( ) |
内蒙古工业大学 数据科学与应用学院,内蒙古 呼和浩特 010080 |
|
Traffic flow prediction model based on spatio-temporal graph convolution with multi-information fusion |
Chuang MENG( ),Hui WANG*( ) |
College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China |
1 |
祁朵, 毛政元 基于自适应时序剖分与KNN的短时交通流量预测[J]. 地球信息科学学报, 2022, 24 (2): 339- 351 QI Duo, MAO Zheng-yuan Short-term traffic flow prediction based on adaptive time Slice and KNN[J]. Journal of Geo-Information Science, 2022, 24 (2): 339- 351
|
2 |
康军, 段宗涛, 唐蕾, 等 一种LS-SVM在线式短时交通流预测方法[J]. 计算机应用研究, 2018, 35 (10): 2965- 2968 KANG Jun, DUAN Zong-tao, TANG Lei, et al LS-SVM online shrot traffic flow prediction method[J]. Computer Application Research, 2018, 35 (10): 2965- 2968
|
3 |
林浩, 李雷孝, 王慧, 等 基于相关向量机和模糊综合评价的路况预测模型[J]. 浙江大学学报: 工学版, 2021, 55 (6): 1072- 1082 LIN Hao, LI Lei-xiao, WANG Hui, et al Model based on relevance vector machine and fuzzy comprehensive evaluation for road condition prediction[J]. Journal of ZheJiang University: Engineering Science, 2021, 55 (6): 1072- 1082
|
4 |
KANG D Q, LV Y S, CHEN Y Y. Short-term traffic flow prediction with LSTM recurrent neural network[C]// 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Yokohama: IEEE, 2017: 1-6.
|
5 |
GAO Y, ZHOU C J, RONG J, et al, Short-term traffic speed forecasting using a deep Learning method based on multitemporal traffic flow volume[J]. IEEE Access, 2022, 10: 82384-82395.
|
6 |
ZHENG Z, CHEN W, WU X, et al LSTM network: a deep learning approach for short-term traffic forecast[J]. Intelligent Transport Systems, 2017, 11 (2): 68- 75
doi: 10.1049/iet-its.2016.0208
|
7 |
SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[J]. MIT Press, 2015, 1: 802-810.
|
8 |
晏臻, 于重重, 韩璐, 等 基于CNN+LSTM的短时交通流量预测方法[J]. 计算机工程与设计, 2019, 40 (9): 2620- 2624+2659 YAN Zhen, YU Chong-chong, HAN Lu, et al Short-term traffic flow forecasting method based on CNN+LSTM[J]. Computer Engineering and Design, 2019, 40 (9): 2620- 2624+2659
doi: 10.16208/j.issn1000-7024.2019.09.038
|
9 |
王婧娟, 陈庆奎 一种时空注意力网络的交通预测模型[J]. 小型微型计算机系统, 2021, 42 (2): 303- 307 WANG Jin-juan, CHEN Qing-kui Traffic prediction model based on spationtemporal attention network[J]. Mini Microcomputer System, 2021, 42 (2): 303- 307
|
10 |
罗文慧, 董宝田, 王泽胜 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17 (5): 68- 74 LUO Wen-hui, DONG Bao-tian, WANG Ze-sheng Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J]. Transportation System Engineering and Information, 2017, 17 (5): 68- 74
doi: 10.16097/j.cnki.1009-6744.2017.05.010
|
11 |
叶景, 李丽娟, 唐臻旭 基于CNN-XGBoost的短时交通流预测[J]. 计算机工程与设计, 2020, 41 (4): 1080- 1086 YE Jing, LI Li-juan, TANG Zhen-xu Short-term traffic flow prediction based on CNN-XGBoost[J]. Computer Engineering and Design, 2020, 41 (4): 1080- 1086
doi: 10.16208/j.issn1000-7024.2020.04.030
|
12 |
THOMAS N, KIP T, WELLING M. Semi-supervised classification with graph convolutional networks [C]// International Conference on Learning Representations. Toulon: ICLR Institute, 2017.
|
13 |
SEO Y, DEFFER M, VANDERG P, et al. Structured sequence modeling with graph convolutional recurrent networks [C]// Processing of the 25th International Conference (ICONIP 2018). Siem Reap: Asia Pacific Neural Network Society, 2018: 362-373.
|
14 |
LI Y , YU R , SHAHABI C , et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[C]// International Conference on Learning Representations. Vancouver: ICLR Institute, 2018.
|
15 |
冯宁, 郭晟楠, 宋超, 等 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30 (3): 759- 769 FENG Ning, GUO Sheng-nan, SONG Chao, et al Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019, 30 (3): 759- 769
doi: 10.13328/j.cnki.jos.005697
|
16 |
杨建喜, 郁超顺, 李韧, 等 基于多周期组件时空神经网络的路网通行速度预测[J]. 交通运输系统工程与信息, 2021, 21 (3): 112- 119+139 YANG Jian-xi, YU Chao-shun, LI Ren, et al Traffic network speed prediction via multi-periodic-component spatialtemporal neural network[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (3): 112- 119+139
|
17 |
闫旭, 范晓亮, 郑传潘, 等 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1147- 1155 YAN Xu, FAN Xiao-liang, ZHENG Chuan-pan, et al Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of ZheJiang University: Engineering Science, 2020, 54 (6): 1147- 1155
|
18 |
LI C , CUI Z , ZHENG W, et al. Spatio-temporal graph convolution for skeleton based action recognition [C]// 32th Association for the Advancement of Artificial Intelligence. New Orleans: AAAI Institute. 2018: 938-946.
|
19 |
SONG C, LIN Y, GUO S, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting [C]// 34th Association for the Advancement of Artificial Intelligence. New York: AAAI Institute, 2020: 914-921.
|
20 |
GUO S , LIN Y , FENG N , et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [C]// National Conference on Artificial Intelligence. 33th Association for the Advancement of Artificial Intelligence. Hawaii State: AAAI Institute, 2019: 922-929.
|
21 |
HU Y. Research on city traffic flow forecast based on graph convolutional neural network [C]// 2021 IEEE 2nd International Conference on Big Data. NanChang: Artificial Intelligence and Internet of Things Engineering, 2021: 269-273.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|