Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (7): 1366-1376    DOI: 10.3785/j.issn.1008-973X.2024.07.006
交通工程、土木工程     
融合知识图谱的时空多图卷积交通流量预测
李劲业(),李永强*()
浙江工业大学 信息工程学院,浙江 杭州 310023
Spatial-temporal multi-graph convolution for traffic flow prediction by integrating knowledge graphs
Jinye LI(),Yongqiang LI*()
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
 全文: PDF(1616 KB)   HTML
摘要:

现有的交通流量预测方法关注交通信息的时空相关性,未充分考虑外部因素对交通的影响,为此提出融合静态和动态知识图谱的时空多图卷积交通流量预测模型. 基于道路交通信息和外部因素,构建城市交通知识图谱和4个不同语义的路网拓扑图,将城市交通知识图谱输入关系演化图卷积神经网络,实现知识嵌入;使用知识融合模块将车流量矩阵与知识嵌入融合;将4个路网拓扑图和融合知识的车流量矩阵输入时空多图卷积模块,提取时空特征,通过全连接层输出交通流量预测值. 在杭州交通数据集上评估模型性能,与先进的基线模型对比,所提模型的性能提高了5.76%~10.71%. 鲁棒性实验结果表明,所提模型具有较强的抗干扰能力.

关键词: 智能交通交通流量预测城市交通知识图谱多图卷积神经网络知识融合模块路网拓扑图    
Abstract:

A spatial-temporal multi-graph convolution traffic flow prediction model by integrating static and dynamic knowledge graphs was proposed, as current traffic flow prediction methods focus on the spatial-temporal correlation of traffic information and fail to fully take into account the influence of external factors on traffic. An urban traffic knowledge graph and four road network topological graphs with distinct semantics were systematically constructed, drawing upon the road traffic information and the external factors. The urban traffic knowledge graph was inputted into the relational evolution graph convolutional neural network to realize the knowledge embedding. The traffic flow matrix and the knowledge embedding were integrated using the knowledge fusion module. The four road network topology graphs and the traffic flow matrix with fused knowledge were fed into the spatial-temporal multi-graph convolution module to extract spatiotemporal features, and the traffic flow prediction value was outputted through the fully connected layer. The model performance was evaluated on a Hangzhou traffic data set. Compared with the advanced baseline, the performance of the proposed model improved by 5.76%-10.71%. Robustness experiment results show that the proposed model has a strong ability to resist interference.

Key words: intelligent transportation    traffic flow prediction    urban traffic knowledge graph    multi-graph convolutional neural network    knowledge fusion module    road network topological graph
收稿日期: 2023-09-20 出版日期: 2024-07-01
CLC:  TP 399  
基金资助: 国家自然科学基金资助项目(62073294);浙江省自然科学基金资助项目(LZ21F030003).
通讯作者: 李永强     E-mail: 2924258232@qq.com;yqli@zjut.edu.cn
作者简介: 李劲业(1998—),男,硕士生,从事智能交通、知识图谱研究. orcid.org/0009-0000-2317-7309. E-mail:2924258232@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李劲业
李永强

引用本文:

李劲业,李永强. 融合知识图谱的时空多图卷积交通流量预测[J]. 浙江大学学报(工学版), 2024, 58(7): 1366-1376.

Jinye LI,Yongqiang LI. Spatial-temporal multi-graph convolution for traffic flow prediction by integrating knowledge graphs. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1366-1376.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.07.006        https://www.zjujournals.com/eng/CN/Y2024/V58/I7/1366

图 1  所提交通流量预测模型的整体框架图
图 2  静态知识图谱解释性示例
图 3  动态知识图谱解释性示例
图 4  静态和动态交通知识图谱知识嵌入流程图
图 5  知识融合模块
图 6  时空多图卷积模块结构图
模型t=10 mint=30 mint=60 min
RMSEMAEAccR2RMSEMAEAccR2RMSEMAEAccR2
HA26.40313.5130.6690.84327.74114.1660.6520.82629.86315.1740.6270.800
LSTM11.8746.7090.8330.96613.2437.4330.8150.95415.2188.4540.7960.935
ST-GCN11.2146.4450.8380.97212.3387.1290.8330.96414.0627.9980.8240.951
TMGCN10.9375.8220.8410.96911.8976.2840.8360.96513.2216.9320.8290.956
KST-GCN10.6255.6730.8490.97111.4215.9620.8430.96612.6376.3710.8340.959
本研究10.0135.2260.8720.97810.8165.5360.8640.97211.8535.9530.8530.963
表 1  不同交通流量预测模型对未来3个时段的交通状况预测结果
图 7  不同交通流量预测模型的性能对比垂线图
模型RMSEMAEAccR2
TMGCN10.9375.8220.8410.969
STMGCN-SDKG-no Gc10.4845.5360.8530.970
STMGCN-SDKG-no Gr10.3045.3090.8650.974
STMGCN-SDKG-no Gd10.3185.4230.8630.973
STMGCN-SDKG-no Gf10.4035.4510.8560.971
STMGCN-SDKG-no MLP10.3275.3470.8560.973
STMGCN-SDKG-no SKG10.4545.4460.8530.971
STMGCN-SDKG-no DKG10.6035.6870.8490.969
STMGCN-SDKG10.0135.2260.8720.978
表 2  所提交通流量预测模型的消融实验结果
图 8  所提交通流量预测模型的鲁棒性实验结果
1 陆化普, 李瑞敏 城市智能交通系统的发展现状与趋势[J]. 工程研究——跨学科视野中的工程, 2014, 6 (1): 6- 19
LU Huapu, LI Ruimin Developing trend of ITS and strategy suggestions[J]. Journal of Engineering Studies, 2014, 6 (1): 6- 19
doi: 10.3724/SP.J.1224.2014.00006
2 NAGY A M, SIMON V Survey on traffic prediction in smart cities[J]. Pervasive and Mobile Computing, 2018, 50: 148- 163
doi: 10.1016/j.pmcj.2018.07.004
3 周毅, 胡姝婷, 李伟, 等 图神经网络驱动的交通预测技术: 探索与挑战[J]. 物联网学报, 2021, 5 (4): 1- 16
ZHOU Yi, HU Shuting, LI Wei, et al Graph neural network driven traffic prediction technology: review and challenge[J]. Chinese Journal on Internet of Things, 2021, 5 (4): 1- 16
doi: 10.11959/j.issn.2096-3750.2021.00235
4 LANA I, DEL SER J, VELEZ M, et al Road traffic forecasting: recent advances and new challenges[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 10 (2): 93- 109
doi: 10.1109/MITS.2018.2806634
5 WANG J, ZHU W, SUN Y, et al An effective dynamic spatiotemporal framework with external features information for traffic prediction[J]. Applied Intelligence, 2021, 51: 3159- 3173
doi: 10.1007/s10489-020-02043-1
6 ZHANG D, KABUKA M R Combining weather condition data to predict traffic flow: a GRU‐based deep learning approach[J]. IET Intelligent Transport Systems, 2018, 12 (7): 578- 585
doi: 10.1049/iet-its.2017.0313
7 LI Z, JIN X, LI W, et al. Temporal knowledge graph reasoning based on evolutional representation learning [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval . Montréal: ACM, 2021: 408–417.
8 孙赟, 李明涛, 姚晓晖 基于BP神经网络人群流量预测的实现[J]. 中国安全生产科学技术, 2010, 6 (2): 61- 65
SUN Yun, LI Mingtao, YAO Xiaohui Implementation of crowd flow prediction based on BP neural network[J]. Journal of Safety Science and Technology, 2010, 6 (2): 61- 65
9 AHN J, KO E, KIM E Y. Highway traffic flow prediction using support vector regression and Bayesian classifier [C]// 2016 International Conference on Big Data and Smart Computing . Hong Kong: IEEE, 2016: 239–244.
10 DAI G, MA C, XU X Short-term traffic flow prediction method for urban road sections based on space–time analysis and GRU[J]. IEEE Access, 2019, 7: 143025- 143035
doi: 10.1109/ACCESS.2019.2941280
11 PAN B, DEMIRYUREK U, SHAHABI C. Utilizing real-world transportation data for accurate traffic prediction [C]// 2012 IEEE 12th International Conference on Data Mining . Brussels: IEEE, 2012: 595–604.
12 HAMED M M, AL-MASAEID H R, SAID Z M B Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121 (3): 249- 254
doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
13 OKUTANI I, STEPHANEDES Y J Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18 (1): 1- 11
doi: 10.1016/0191-2615(84)90002-X
14 CAI P, WANG Y, LU G, et al A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 21- 34
doi: 10.1016/j.trc.2015.11.002
15 王博文, 王景升, 朱茵, 等 基于ARMA-SVR的短时交通流量预测模型研究[J]. 公路交通科技, 2021, 38 (11): 126- 133
WANG Bowen, WANG Jingsheng, ZHU Yin, et al Study on short-term traffic volume prediction model based on ARMA-SVR[J]. Journal of Highway and Transportation Research and Development, 2021, 38 (11): 126- 133
16 KUMAR K, PARIDA M, KATIYAR V K Short term traffic flow prediction for a non urban highway using artificial neural network[J]. Procedia - Social and Behavioral Sciences, 2013, 104: 755- 764
doi: 10.1016/j.sbspro.2013.11.170
17 YANG B, SUN S, LI J, et al Traffic flow prediction using LSTM with feature enhancement[J]. Neurocomputing, 2019, 332: 320- 327
doi: 10.1016/j.neucom.2018.12.016
18 HUSSAIN B, AFZAL M K, AHMAD S, et al Intelligent traffic flow prediction using optimized GRU model[J]. IEEE Access, 2021, 9: 100736- 100746
doi: 10.1109/ACCESS.2021.3097141
19 MA X, DAI Z, HE Z, et al Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17 (4): 818
doi: 10.3390/s17040818
20 GUO S, LIN Y, LI S, et al Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (10): 3913- 3926
doi: 10.1109/TITS.2019.2906365
21 ZHENG H, LIN F, FENG X, et al A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (11): 6910- 6920
doi: 10.1109/TITS.2020.2997352
22 WANG H, ZHANG R, CHENG X, et al Hierarchical traffic flow prediction based on spatial-temporal graph convolutional network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9): 16137- 16147
doi: 10.1109/TITS.2022.3148105
23 YIN X, WU G, WEI J, et al Deep learning on traffic prediction: methods, analysis, and future directions[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (6): 4927- 4943
24 ZHAO L, SONG Y, ZHANG C, et al T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (9): 3848- 3858
doi: 10.1109/TITS.2019.2935152
25 BAI J, ZHU J, SONG Y, et al A3T-GCN: attention temporal graph convolutional network for traffic forecasting[J]. ISPRS International Journal of Geo-Information, 2021, 10 (7): 485
doi: 10.3390/ijgi10070485
26 LV M, HONG Z, CHEN L, et al Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (6): 3337- 3348
doi: 10.1109/TITS.2020.2983763
27 ZHU J, HAN X, DENG H, et al KST-GCN: a knowledge-driven spatial-temporal graph convolutional network for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9): 15055- 15065
doi: 10.1109/TITS.2021.3136287
28 SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the European Semantic Web Conference . [S. l.]: Springer, 2018: 593–607.
29 DUDEK G Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting[J]. International Journal of Forecasting, 2016, 32 (3): 1057- 1060
doi: 10.1016/j.ijforecast.2015.11.009
[1] 孟闯,王慧. 多信息融合的时空图卷积交通流量预测模型[J]. 浙江大学学报(工学版), 2023, 57(8): 1541-1550.
[2] 徐维祥,康楠,徐婷. 基于出行计划数据的最优路径规划方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1542-1552.
[3] 徐小高,夏莹杰,朱思雨,邝砾. 基于强化学习的多路口可变车道协同控制方法[J]. 浙江大学学报(工学版), 2022, 56(5): 987-994, 1005.
[4] 张楠,董红召,佘翊妮. 公交专用道条件下公交车辆轨迹的Seq2Seq预测[J]. 浙江大学学报(工学版), 2021, 55(8): 1482-1489.
[5] 黄靖,钟书远,文元桥,罗坤. 用于交通流预测的自适应图生成跳跃网络[J]. 浙江大学学报(工学版), 2021, 55(10): 1825-1833.
[6] 柴干, 赵倩, 蒋珉. 城市智能交通信号控制系统的设计与开发[J]. J4, 2010, 44(7): 1241-1246.
[7] 李威武 王慧 钱积新. 智能交通系统中路径诱导算法研究进展[J]. J4, 2005, 39(6): 819-825.
[8] 潘翔. 基于彩色信息和边缘特征的运动阴影检测[J]. J4, 2004, 38(4): 389-391.