Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (5): 941-950    DOI: 10.3785/j.issn.1008-973X.2024.05.007
计算机技术、通信技术     
基于改进图卷积神经网络的航空行李特征感知
邢志伟(),朱书杰,李彪
中国民航大学 电子信息与自动化学院,天津 300300
Airline baggage feature perception based on improved graph convolutional neural network
Zhiwei XING(),Shujie ZHU,Biao LI
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
 全文: PDF(2439 KB)   HTML
摘要:

针对航空行李自动化码放处理需求下构型特征感知能力不足的问题,设计以PointNet++为基准,融入图卷积神经网络和自注意力机制的航空行李特征感知网络模型. 在骨干网络的特征抽象层中引入局部空间注意力模块,提取航空行李点云中相邻点的关联空间结构特征,感知区域特征空间的内在联系. 通过全局特征聚合模块学习行李点云局部特征间的相关性,自适应聚合航空行李局部特征,形成点云全局上下文信息. 利用循环最大池化层回收特征降维中丢弃点的特征,在多个层次上收集航空行李的特征信息,在减少信息冗余的同时,保留强度鲜明的局部、全局特征激活. 实验结果表明,航空行李分类的平均精度和整体精度分别为94.68%和96.32%,比PointNet++分别提高了6.53%和5.07%. 该网络模型的航空行李特征感知性能优于现有的其他智能算法,能够为航空行李码放空间优化及控制提供准确、可靠、有效的输入.

关键词: 航空运输行李特征感知三维点云图卷积神经网络自注意力机制    
Abstract:

An airline baggage feature perception network model was designed with PointNet++ as the benchmark and incorporating graph convolutional neural network and self-attention mechanism aiming at the problem that the configuration feature perception capability of airline baggage was inadequate under the demand of automatic baggage stacking handling. The local spatial attention module was introduced in the feature abstraction layer of the backbone network to extract associated spatial structure features of neighboring points in aviation baggage point cloud in order to perceive the intrinsic connection of its region feature space. Correlation between local features of airline baggage point cloud was learned through the global feature aggregation module to adaptively aggregate local features so as to form global contextual information. The recycling maxpooling layer was applied to recycle features from some discard points in the feature reduction process and collect baggage information at multiple levels, reducing information redundancy while retaining local and global feature activations with stark intensity. The experimental results showed that the average and overall accuracy of airline baggage classification were 94.68% and 96.32%, which were 6.53% and 5.07% improved over PointNet++, respectively. The airline baggage feature perception performance of the network model is better than other existing intelligent algorithms, which can provide accurate, reliable and effective input for airline baggage stacking space optimization and control.

Key words: air transport    baggage feature perception    three-dimensional point cloud    graph convolutional neural network    self-attention mechanism
收稿日期: 2023-05-04 出版日期: 2024-04-26
CLC:  TP 391  
基金资助: 国家重点研发计划资助项目(2018YFB1601200);中国民航大学研究生科研创新项目(2022YJS023).
作者简介: 邢志伟(1970—),男,教授,博导,从事机场运行控制与信息研究. orcid. org/0000-0003-4933-1591. E-mail:cauc_xzw@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
邢志伟
朱书杰
李彪

引用本文:

邢志伟,朱书杰,李彪. 基于改进图卷积神经网络的航空行李特征感知[J]. 浙江大学学报(工学版), 2024, 58(5): 941-950.

Zhiwei XING,Shujie ZHU,Biao LI. Airline baggage feature perception based on improved graph convolutional neural network. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 941-950.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.05.007        https://www.zjujournals.com/eng/CN/Y2024/V58/I5/941

图 1  航空行李特征采集的实验系统
图 2  航空行李特征信息采集实验系统的运行状态
图 3  航空行李分类
类别表面材质形状特点
方箱纸板、塑料规则长方体
硬箱金属、塑料光滑曲面、类长方体
软箱织物、皮革凹凸曲面、类长方体
硬包金属、塑料光滑曲面、类椭球体
软包织物、皮革凹凸曲面、类椭球体
异形塑料保护套球形、柱形不规则物体
表 1  航空行李的分类依据
图 4  GACP网络的结构
图 5  局部空间注意力模块的结构
图 6  全局特征聚合模块的结构
图 7  循环最大池化层的示意图
软硬件名称软硬件配置参数数值
Operation systemWindows 10Batch size8
CPUIntel Xeon E5-2680 v4Input point1 024
GPUNVIDIA RTX 3080 TiEpoch200
RAM64 GBLearning rate0.001
Python+Pytorch3.7. 0+1.7.1Gamma0.7
CUDA+CUDNN11.0+8.1.0OptimizerAdam
表 2  航空行李特征感知的实验配置
图 8  扩展数据集的制作方法
算法方箱硬箱软箱硬包软包异形mAcc/%OA/%t/s
PointNet86.9286.1487.4780.7685.3389.4586.0189.67124.5
PointNet++88.6188.2789.9482.7588.0391.3188.1591.25267.3
DGCNN90.5692.7394.4384.6787.2694.6890.7293.06192.4
PointVGG91.2393.5294.4887.5489.7394.8191.8994.18216.7
GACP(本文方法)93.7295.6496.3991.1692.5398.6694.6896.32283.2
表 3  不同模型的分类精度对比
图 9  不同模型的分类精度曲线
组数LSAGFARMPmAcc/%OA/%
A×××88.1591.25
B××90.0792.61
C×93.4595.73
D94.6896.32
表 4  不同模块的消融实验
图 10  PointNet++感知结果
图 11  GACP感知结果
图 12  行李点云数据的异常现象
图 13  鲁棒性实验结果的对比
1 DAVID L. Baggage IT insights 2022 [R]. Brussels: SITA, 2022.
2 GAO Q, LIANG P Airline baggage appearance transportability detection based on a novel dataset and sequential hierarchical sampling CNN model[J]. IEEE Access, 2021, 9 (2): 41833- 41843
3 PENG C, GAO Q, LUO Q. Method on 3d reconstruction of airline baggage based on active laser projection of improved encoding [C]// IEEE CSAA Guidance, Navigation and Control Conference . Xiamen: IEEE, 2018: 1-7.
4 TANG C, ZHANG X, YU X, et al Target detection and classification based on LiDAR[J]. American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 2018, 49 (1): 28- 39
5 MAZZEO P L, LIBETTA C, SPAGNOLO P, et al A siamese neural network for non-invasive baggage re-identification[J]. Journal of Imaging, 2020, 6 (11): 126
doi: 10.3390/jimaging6110126
6 CHEN R, ZHANG H, LI C, et al. LSDNN: local-salient deep neural network for baggage re-identification with material discerning [C]// Chinese Automation Congress . Shanghai: IEEE, 2020: 6344-6349.
7 ZHAO Q, MA H, LU R, et al. MVAD-Net: learning view-aware and domain-invariant representation for baggage re-identification [C]// Pattern Recognition and Computer Vision . Beijing: Springer, 2021: 142-153.
8 WU H, LUO Z, CAO D, et al. Attention and multi-grained feature learning for baggage re-identification[C]// Computer Supported Cooperative Work and Social Computing . Xiangtan: Springer, 2022: 460-472.
9 YANG H, CHU X, ZHANG L, et al QuadNet: quadruplet loss for multi-view learning in baggage re-identification[J]. Pattern Recognition, 2022, 126 (5): 108- 109
10 行李处理系统 带式输送机: MH/T 6123.1—2021 [S]. 北京: 中国民用航空局, 2021.
11 ZHANG Z, LI D, WU J, et al. MVB: a large-scale dataset for baggage re-identification and merged Siamese networks [C]// Pattern Recognition and Computer Vision . Xi’an: Springer, 2019: 84-96.
12 CAZAN C. Identification of surface material of baggage for self-service bag drop system [D]. Hong Kong: The University of Hong Kong, 2020.
13 QI C R, YI L, SU H, et al PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30 (5): 78- 92
14 GAO Z, YAN J, ZHAI G, et al. Learning local neighboring structure for robust 3d shape representation [C]// Proceedings of the AAAI Conference on Artificial Intelligence , 2021, 35(2): 1397-1405.
15 VASWANI A, SHAZEER N, PARMAR N, et al Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30 (8): 5998- 6008
16 DU Z, YE H, CAO F A novel local-global graph convolutional method for point cloud semantic segmentation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 15 (6): 1- 15
17 NIU Z, ZHONG G, YUE G, et al Recurrent attention unit: a new gated recurrent unit for long-term memory of important parts in sequential data[J]. Neurocomputing, 2022, 517 (4): 1- 9
18 CHEN J, KAKILLIOGLU B, REN H, et al. Why discard if you can recycle?: a recycling max pooling module for 3d point cloud analysis [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 559-567.
19 LI R, LI X, HENG P A, et al. PointAugment: an auto-augmentation framework for point cloud classification [J]. IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 6378-6387.
20 CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3d classification and segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 77-85.
21 WANG Y, SUN Y, LIU Z, et al Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38 (5): 146- 152
[1] 周传华,操礼春,周家亿,詹凤. 图卷积融合计算时效网络节点重要性评估分析[J]. 浙江大学学报(工学版), 2023, 57(5): 930-938.
[2] 刘超,孔兵,杜国王,周丽华,陈红梅,包崇明. 高阶互信息最大化与伪标签指导的深度聚类[J]. 浙江大学学报(工学版), 2023, 57(2): 299-309.
[3] 杨天乐,李玲霞,张为. 基于自注意力机制的双分支密集人群计数算法[J]. 浙江大学学报(工学版), 2023, 57(10): 1955-1965.
[4] 赵卿,张雪英,陈桂军,张静. 基于模态注意力图卷积特征融合的EEG和fNIRS情感识别[J]. 浙江大学学报(工学版), 2023, 57(10): 1987-1997.
[5] 鞠晓臣,赵欣欣,钱胜胜. 基于自注意力机制的桥梁螺栓检测算法[J]. 浙江大学学报(工学版), 2022, 56(5): 901-908.
[6] 刘英莉,吴瑞刚,么长慧,沈韬. 铝硅合金实体关系抽取数据集的构建方法[J]. 浙江大学学报(工学版), 2022, 56(2): 245-253.
[7] 于楠晶,范晓飚,邓天民,冒国韬. 基于多头自注意力的复杂背景船舶检测算法[J]. 浙江大学学报(工学版), 2022, 56(12): 2392-2402.
[8] 陈涵娟,达飞鹏,盖绍彦. 基于竞争注意力融合的深度三维点云分类网络[J]. 浙江大学学报(工学版), 2021, 55(12): 2342-2351.
[9] 闫旭,范晓亮,郑传潘,臧彧,王程,程明,陈龙彪. 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1147-1155.
[10] 王盛,项志宇. 基于多谱融合的植被环境中障碍物检测[J]. 浙江大学学报(工学版), 2015, 49(11): 2223-2229.