计算机技术、通信技术 |
|
|
|
|
基于改进图卷积神经网络的航空行李特征感知 |
邢志伟( ),朱书杰,李彪 |
中国民航大学 电子信息与自动化学院,天津 300300 |
|
Airline baggage feature perception based on improved graph convolutional neural network |
Zhiwei XING( ),Shujie ZHU,Biao LI |
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China |
1 |
DAVID L. Baggage IT insights 2022 [R]. Brussels: SITA, 2022.
|
2 |
GAO Q, LIANG P Airline baggage appearance transportability detection based on a novel dataset and sequential hierarchical sampling CNN model[J]. IEEE Access, 2021, 9 (2): 41833- 41843
|
3 |
PENG C, GAO Q, LUO Q. Method on 3d reconstruction of airline baggage based on active laser projection of improved encoding [C]// IEEE CSAA Guidance, Navigation and Control Conference . Xiamen: IEEE, 2018: 1-7.
|
4 |
TANG C, ZHANG X, YU X, et al Target detection and classification based on LiDAR[J]. American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 2018, 49 (1): 28- 39
|
5 |
MAZZEO P L, LIBETTA C, SPAGNOLO P, et al A siamese neural network for non-invasive baggage re-identification[J]. Journal of Imaging, 2020, 6 (11): 126
doi: 10.3390/jimaging6110126
|
6 |
CHEN R, ZHANG H, LI C, et al. LSDNN: local-salient deep neural network for baggage re-identification with material discerning [C]// Chinese Automation Congress . Shanghai: IEEE, 2020: 6344-6349.
|
7 |
ZHAO Q, MA H, LU R, et al. MVAD-Net: learning view-aware and domain-invariant representation for baggage re-identification [C]// Pattern Recognition and Computer Vision . Beijing: Springer, 2021: 142-153.
|
8 |
WU H, LUO Z, CAO D, et al. Attention and multi-grained feature learning for baggage re-identification[C]// Computer Supported Cooperative Work and Social Computing . Xiangtan: Springer, 2022: 460-472.
|
9 |
YANG H, CHU X, ZHANG L, et al QuadNet: quadruplet loss for multi-view learning in baggage re-identification[J]. Pattern Recognition, 2022, 126 (5): 108- 109
|
10 |
行李处理系统 带式输送机: MH/T 6123.1—2021 [S]. 北京: 中国民用航空局, 2021.
|
11 |
ZHANG Z, LI D, WU J, et al. MVB: a large-scale dataset for baggage re-identification and merged Siamese networks [C]// Pattern Recognition and Computer Vision . Xi’an: Springer, 2019: 84-96.
|
12 |
CAZAN C. Identification of surface material of baggage for self-service bag drop system [D]. Hong Kong: The University of Hong Kong, 2020.
|
13 |
QI C R, YI L, SU H, et al PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30 (5): 78- 92
|
14 |
GAO Z, YAN J, ZHAI G, et al. Learning local neighboring structure for robust 3d shape representation [C]// Proceedings of the AAAI Conference on Artificial Intelligence , 2021, 35(2): 1397-1405.
|
15 |
VASWANI A, SHAZEER N, PARMAR N, et al Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30 (8): 5998- 6008
|
16 |
DU Z, YE H, CAO F A novel local-global graph convolutional method for point cloud semantic segmentation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 15 (6): 1- 15
|
17 |
NIU Z, ZHONG G, YUE G, et al Recurrent attention unit: a new gated recurrent unit for long-term memory of important parts in sequential data[J]. Neurocomputing, 2022, 517 (4): 1- 9
|
18 |
CHEN J, KAKILLIOGLU B, REN H, et al. Why discard if you can recycle?: a recycling max pooling module for 3d point cloud analysis [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 559-567.
|
19 |
LI R, LI X, HENG P A, et al. PointAugment: an auto-augmentation framework for point cloud classification [J]. IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 6378-6387.
|
20 |
CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3d classification and segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 77-85.
|
21 |
WANG Y, SUN Y, LIU Z, et al Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38 (5): 146- 152
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|