电气工程 |
|
|
|
|
基于组合零样本学习的接触网吊弦线缺陷识别 |
顾桂梅1(),贾耀华1,赵岩浩2,张文辉2,闫炳旭3 |
1. 兰州交通大学 自动化与电气工程学院,甘肃 兰州 730070 2. 中国铁路兰州局集团有限公司,甘肃 兰州 730030 3. 中国铁路郑州局集团有限公司,河南 郑州 450015 |
|
Defect identification for catenary dropper line based on compositional zero-shot learning |
Gui-mei GU1(),Yao-hua JIA1,Yan-hao ZHAO2,Wen-hui ZHANG2,Bing-xu YAN3 |
1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2. China Railway Lanzhou Bureau Group Co. Ltd, Lanzhou 730030, China 3. China Railway Zhengzhou Bureau Group Co. Ltd, Zhengzhou 450015, China |
引用本文:
顾桂梅,贾耀华,赵岩浩,张文辉,闫炳旭. 基于组合零样本学习的接触网吊弦线缺陷识别[J]. 浙江大学学报(工学版), 2023, 57(11): 2285-2293.
Gui-mei GU,Yao-hua JIA,Yan-hao ZHAO,Wen-hui ZHANG,Bing-xu YAN. Defect identification for catenary dropper line based on compositional zero-shot learning. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2285-2293.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.016
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2285
|
1 |
胡碟. 基于深度学习的铁路接触网吊弦检测与识别[D]. 成都: 西南交通大学, 2020: 2. HU Die. Detection and recognition of railway catenary dropper based on deep learning [D]. Chengdu: Southwest Jiaotong University, 2020: 2.
|
2 |
齐冬莲, 钱佳莹, 闫云凤, 等 一种基于 RefineDet 网络和霍夫变换的高速铁路接触网吊弦状态多尺度检测方法[J]. 电子与 信息学报, 2021, 43 (7): 2014- 2022 QI Dong-lian, QIAN Jia-ying, YAN Yun-feng, et al A multi-scale detection method for dropper states in high-speed-railway contact network based on RefineDet network and Hough transform[J]. Journal of Electronics and Information Technology, 2021, 43 (7): 2014- 2022
|
3 |
陈强, 彭继慎, 闫云凤, 等 基于 FCOS 和 ResNet50-F 的吊弦不受力识别方法[J]. 铁道学报, 2021, 43 (10): 36- 42 CHEN Qiang, PENG Ji-shen, YAN Yun-feng, et al Method based on FCOS and ResNet50-FL for identifying stressfree dropper[J]. Journal of the China Railway Society, 2021, 43 (10): 36- 42
|
4 |
余晓宁, 顾桂梅, 王阳萍, 等 基于Faster R-CNN的接触网吊弦故障检测方法[J]. 兰州交通大学学报, 2021, 40 (2): 58- 65 YU Xiao-ning, GU Gui-mei, WANG Yang-ping, et al Catenary dropper fault detection method based on faster R-CNN[J]. Journal of Lanzhou Jiaotong University, 2021, 40 (2): 58- 65
|
5 |
LAROCHELLE H, ERHAN D, BENGIO Y. Zerodata learning of new tasks [C]// Proceedings of the 23rd National Conference on Artificial Intelligence. Chicago: AAAI, 2008: 646–651.
|
6 |
LAMPERT C H, NICKISCH H, HARMELING S. Attribute based classification for zeroshot visual object categorization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 453465.
|
7 |
FROME A, CORRADO G S, SHLENS J, et al. Devise: a deep visualsemantic embedding model [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. New York: NIPS, 2013, 2121-2129.
|
8 |
MIKOLOY T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. New York: NIPS, 2013, 3111-3119.
|
9 |
KINGMA D P, WELLING M. Autoencoding variational bayes [EB/OL]. [2022-11-17]. https://arxiv.org/pdf/1312.6114.pdf.
|
10 |
HOFFMAN D D, RICHARDS W A Parts of recognition[J]. Cognition, 1984, 18 (1): 65- 96
|
11 |
BIEDERMAN I Recognition-by-components: a theory of human image understanding[J]. Psychological Review, 1987, 94 (2): 115
doi: 10.1037/0033-295X.94.2.115
|
12 |
MISRA I, GUPTA A, HEBERT M. From red wine to red tomato: composition with context [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1160-1169.
|
13 |
PURUSHWKAKAM S, NICKEL M, GUPTA A, et al. Task-driven modular networks for zero-shot compositional learning [C]// 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3592-3601.
|
14 |
NAGARAJAN T, GRAUMAN K. Attributes as operators: factorizing unseen attribute-object compositions [C]// 2018 European Conference on Computer Vision. Munich: ECCV, 2018: 172-190.
|
15 |
LI Y L, XU Y, MAO X H, et al. Symmetry and group in attribute-object compositions [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11313-11322.
|
16 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2022-11-19]. https://arxiv.org/pdf/1609.02907.pdf.
|
17 |
王雪松, 荣小龙, 程玉虎, 等 基于自适应多尺度图卷积网络的多标签图像识别[J]. 控制与决策, 2022, 37 (7): 1737- 1744 WANG Xue-song, RONG Xiao-long, CHENG Yu-hu, et al Multi-label image recognition based on adaptive multi-scale graph convolutional network[J]. Control and Decision, 2022, 37 (7): 1737- 1744
|
18 |
GAO H Y, JI S W Graph U-Nets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 44 (9): 4948- 4960
|
19 |
PIZER S M, AMBURN E P, AUSTIN J D, et al Adaptive histogram equalization and its variations[J]. Computer Vision, Graphics, and Image Processing, 1987, 39 (3): 355- 368
doi: 10.1016/S0734-189X(87)80186-X
|
20 |
HAN Z Y, FU Z Y, CHEN S, et al. Contrastive embedding for generalized zero-shot learning[C]// 2021 IEEE/ CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 2371-2381.
|
21 |
XIAN Y Q, SCHIELE B, AKATA Z. Zero-Shot Learning: the good, the bad and the ugly [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3077-3086.
|
22 |
胡文博, 邱实, 许馨月, 等 基于深度学习的钢轨伤损超声检测与分类[J]. 铁道学报, 2021, 43 (4): 108- 116 HU Wen-bo, QIU Shi, XU Xin-yue, et al Ultrasonic detection and classification for internal defect of rail based on deep learning[J]. Journal of the China Railway Society, 2021, 43 (4): 108- 116
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|