Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1596-1603    DOI: 10.3785/j.issn.1008-973X.2024.08.007
机械工程、能源工程     
超声分散时间对GO-CF增强SMPC形状记忆性能的影响
宋晨1(),马玉钦1,*(),阮鸥2,徐津3,刘欣然1,刘思濛1
1. 长安大学 道路施工技术与装备教育部重点实验室,陕西 西安 710064
2. 威睿电动汽车技术(宁波)有限公司,浙江 宁波 315000
3. 极氪汽车(宁波杭州湾新区)有限公司,浙江 宁波 315336
Effect of ultrasonic dispersion time on shape memory performance of GO-CF reinforced SMPC
Chen SONG1(),Yuqin MA1,*(),Ou RUAN2,Jin XU3,Xinran LIU1,Simeng LIU1
1. Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an 710064, China
2. Viridi E-Mobility Technology (Ningbo) Limited Company, Ningbo 315000, China
3. Polar Krypton Automobile (Ningbo Hangzhou Bay New Area) Limited Company, Ningbo 315336, China
 全文: PDF(1819 KB)   HTML
摘要:

为了研究超声分散时间对形状记忆聚合物复合材料(SMPC)微观组织和形状记忆性能的影响,采用真空浸渗热压工艺制备6组不同超声分散时间的GO-CF混杂增强SMPC,通过扫描电子显微镜表征SMPC的微观组织形貌,开展形状记忆性能的测试. 结果表明,适当的超声分散时间可以将GO剥离成片状结构并均匀分散在SMPC中,形成机械联锁和化学键合. 随着超声分散时间的增加,SMPC的形状固定率和形状回复率呈现先增大后减小的趋势,除30 min外,其他SMPC的平均回复速率呈现先减小后增大的趋势,当超声分散60 min时,SMPC具有最佳的形状记忆性能,形状固定率和形状回复率分别达到97.85%和97.30%,最大回复力为10.47 N,平均形状回复速率为1.04°/s,机械联锁和化学键合这种复合结构的增加有利于增强SMPC的形状记忆性能,但需要更多的能量来实现SMPC的形状回复.

关键词: 超声分散时间真空浸渗热压工艺氧化石墨烯碳纤维形状记忆性能    
Abstract:

Six groups of GO-CF hybrid reinforced SMPC with different ultrasonic dispersion time were prepared by using vacuum infiltration hot pressing system in order to analyze the effect of ultrasonic dispersion time on the microstructure and shape memory performance of shape memory polymer composites (SMPC). The microstructure morphology of SMPC was characterized by scanning electron microscopy, and shape memory performance tests were conducted. Results show that appropriate ultrasonic dispersion time can peel GO into sheet-like structures and disperse uniformly in SMPC, forming mechanical interlocking and chemical bonding. The shape fixation ratio and shape recovery ratio of SMPC show a trend of first increasing and then decreasing with the increase of ultrasonic dispersion time. The mean recovery ratio of other SMPC shows a trend of first decreasing and then increasing except for 30 minutes. SMPC exhibits the best shape memory performance when the ultrasonic dispersion time is 60 minutes, with shape fixation ratio and shape recovery ratio reaching 97.85% and 97.30% respectively, maximum recovery force of 10.47 N, mean shape recovery ratio of 1.04°/s. The increase of this composite structure of mechanical interlocking and chemical bonding is beneficial to enhance the shape memory performance of SMPC, but more energy is required to achieve the shape recovery of SMPC.

Key words: ultrasonic dispersion time    vacuum infiltration hot pressing system    graphene oxide    carbon fiber    shape memory performance
收稿日期: 2023-09-14 出版日期: 2024-07-23
CLC:  TB 332  
基金资助: 公共大数据国家重点实验室开放基金资助项目(PBD 2022-019);长安大学中央高校基本科研业务费专项资金资助项目(300102253105);陕西省自然科学基础研究计划资助项目(2022JM-265);教育部产学合作协同育人项目(220506298133407);河南省高等学校重点科研项目计划资助项目(23A460033).
通讯作者: 马玉钦     E-mail: chen-song@chd.edu.cn;yqma@chd.edu.cn
作者简介: 宋晨(2000—),男,硕士生,从事新型碳纤维复合材料制件成型工艺控制的研究. orcid.org/0009-0008-7021-115X. E-mail:chen-song@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
宋晨
马玉钦
阮鸥
徐津
刘欣然
刘思濛

引用本文:

宋晨,马玉钦,阮鸥,徐津,刘欣然,刘思濛. 超声分散时间对GO-CF增强SMPC形状记忆性能的影响[J]. 浙江大学学报(工学版), 2024, 58(8): 1596-1603.

Chen SONG,Yuqin MA,Ou RUAN,Jin XU,Xinran LIU,Simeng LIU. Effect of ultrasonic dispersion time on shape memory performance of GO-CF reinforced SMPC. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1596-1603.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.007        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1596

图 1  GO-CF混杂增强SMPC固定过程的示意图
图 2  GO-CF混杂增强SMPC回复过程的示意图
图 3  超声分散70 min的GO-CF混杂增强SMPC的微观形貌
图 4  不同超声分散时间的CF表面的微观组织形貌
图 5  机械联锁的示意图
图 6  不同超声分散时间的SMPC的形状固定率
图 7  不同超声分散时间的SMPC的形状回复率
图 8  超声分散30 min的试样分层裂纹产生与扩展图
图 9  复合材料的交联结构示意图
图 10  不同超声分散时间下复合材料的温度-回复力曲线
图 11  不同超声分散时间的SMPC的平均回复速率
1 LIU Y, DU H, LIU L, et al Shape memory polymers and their composites in aerospace applications: a review[J]. Smart Materials and Structures, 2014, 23 (2): 023001
doi: 10.1088/0964-1726/23/2/023001
2 XIA Y, HE Y, ZHANG F, et al A review of shape memory polymers and composites: mechanisms, materials, and applications[J]. Advanced Materials, 2021, 33 (6): 2000713
doi: 10.1002/adma.202000713
3 张豆, 刘彦菊, 冷劲松 纤维增强形状记忆聚合物复合材料及其航天应用[J]. 复合材料学报, 2021, 38 (3): 698- 711
ZHANG Dou, LIU Yanju, LENG Jinsong Fiber reinforced shape memory polymer composites and their applications in aerospace[J]. Acta Materiae Compositae Sinica, 2021, 38 (3): 698- 711
4 ZARE M, PRABHAKARAN M P, PARVIN N, et al Thermally-induced two-way shape memory polymers: mechanisms, structures, and applications[J]. Chemical Engineering Journal, 2019, 374: 706- 720
doi: 10.1016/j.cej.2019.05.167
5 KHALID M Y, ARIF Z U, NOROOZI R, et al 4D printing of shape memory polymer composites: a review on fabrication techniques, applications, and future perspectives[J]. Journal of Manufacturing Processes, 2022, 81: 759- 797
doi: 10.1016/j.jmapro.2022.07.035
6 马玉钦, 赵亚涛, 许威, 等 高导热石墨烯-碳纤维混杂增强热致形状记忆复合材料研究进展及发展趋势[J]. 复合材料学报, 2020, 37 (10): 2367- 2375
MA Yuqin, ZHAO Yatao, XU Wei, et al Research status and development trend of high thermal conductivity graphene-carbon fiber hybrid reinforced shape memory plastic composite[J]. Acta Materiae Compositae Sinica, 2020, 37 (10): 2367- 2375
7 SALES R C M, GUSMAO S R, GOUVEA R F, et al The temperature effects on the fracture toughness of carbon fiber/RTM-6 laminates processed by VARTM[J]. Journal of Composite Materials, 2017, 51 (12): 1729- 1741
doi: 10.1177/0021998316679499
8 JANG J H, HONG S B, KIM J G, et al Accelerated testing method for predicting long-term properties of carbon fiber-reinforced shape memory polymer composites in a low earth orbit environment[J]. Polymers, 2021, 13 (10): 1628
doi: 10.3390/polym13101628
9 ERKMEN B, BAYRAM G Influence of nanocomposite preparation techniques on the multifunctional properties of carbon fabric-reinforced polystyrene-based composites with carbon nanotubes[J]. SPE Polymers, 2022, 3 (3): 163- 175
doi: 10.1002/pls2.10078
10 LI F, SCARPA F, LAN X, et al Bending shape recovery of unidirectional carbon fiber reinforced epoxy-based shape memory polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 116: 169- 179
doi: 10.1016/j.compositesa.2018.10.037
11 MA Y, WANG J, ZHAO Y, et al A new vacuum pressure infiltration CFRP method and preparation experimental study of composite[J]. Polymers, 2020, 12 (2): 419
doi: 10.3390/polym12020419
12 WANG C, LI J, YU J, et al Grafting of size-controlled graphene oxide sheets onto carbon fiber for reinforcement of carbon fiber/epoxy composite interfacial strength[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 511- 520
doi: 10.1016/j.compositesa.2017.07.015
13 LIU F, SHI Z, DONG Y Improved wettability and interfacial adhesion in carbon fibre/epoxy composites via an aqueous epoxy sizing agent[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 337- 345
doi: 10.1016/j.compositesa.2018.06.026
14 XU L, ZHAO J, SHI M, et al Thermodynamic properties of TPI shape memory polymer composites reinforced by GO/SiO2 modified carbon fiber[J]. Composites Science and Technology, 2022, 226: 109551
doi: 10.1016/j.compscitech.2022.109551
15 BAI Y, ZHANG J, WEN D, et al A reconfigurable, self-healing and near infrared light responsive thermoset shape memory polymer[J]. Composites Science and Technology, 2020, 187: 107940
doi: 10.1016/j.compscitech.2019.107940
16 WANG E, DONG Y, ISLAM M D Z, et al Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites[J]. Composites Science and Technology, 2019, 169: 209- 216
doi: 10.1016/j.compscitech.2018.11.022
17 CHEN L, ZHANG Y, LIU Z, et al Effect of graphene oxide doping on anti-/deicing performance of shape memory epoxy resin[J]. Materials Today Communications, 2022, 30: 103025
doi: 10.1016/j.mtcomm.2021.103025
18 LI F, MA Y, XU Y, et al Effect of graphite oxide content on shape memory performance of graphite oxide-carbon fiber hybrid reinforced shape memory polymer composites by VIHPS[J]. Polymers for Advanced Technologies, 2022, 33 (12): 4265- 4277
doi: 10.1002/pat.5857
19 MA Y, CHEN Y, LI F, et al Effect of fiber mass fraction on microstructure and properties of 2D CF-GO/EP composite prepared by VIHPS[J]. Nanomaterials, 2022, 12 (7): 1184
doi: 10.3390/nano12071184
20 YAVARI F, RAFIEE M A, RAFIEE J, et al Dramatic increase in fatigue life in hierarchical graphene composites[J]. ACS Applied Materials and Interfaces, 2010, 2 (10): 2738- 2743
doi: 10.1021/am100728r
21 范圣男, 杨振国 纳米SiO2/MC尼龙复合材料的制备与性能研究[J]. 复旦学报: 自然科学版, 2020, 59 (1): 90- 96
FAN Shengnan, YANG Zhenguo Preparation and properties evaluation of MC nylon/nano-SiO2 composite[J]. Journal of Fudan University: Natural Science, 2020, 59 (1): 90- 96
22 ZHANG X, FAN X, YAN C, et al Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials and Interfaces, 2012, 4 (3): 1543- 1552
doi: 10.1021/am201757v
23 RAFIEE M A, RAFIEE J, SRIVASTAVA I, et al Fracture and fatigue in graphene nanocomposites[J]. Small, 2010, 6 (2): 179- 183
doi: 10.1002/smll.200901480
24 LIU J, WANG Z, LI S, et al A novel graphene oxide/trans-1, 4-polyisoprene (GO/TPI) shape memory polymer nanocomposite and its multifunctional properties[J]. Nanotechnology, 2019, 30 (25): 255706
doi: 10.1088/1361-6528/ab0868
[1] 朱佩云,李晓章,余明明,谢旭. 剪力滞对CFRP板-钢梁加固界面应力的影响[J]. 浙江大学学报(工学版), 2024, 58(5): 1020-1028.
[2] 洪林,栾丛丛,姚鑫骅,董宁国,纪毓杨,牛成成,丁泽泉,宋学宇,傅建中. 碳纤维复合材料原位增材制造设备与工艺[J]. 浙江大学学报(工学版), 2022, 56(11): 2119-2126.
[3] 杨立宁,张永弟,王金业,常宏杰,杨光. 连续碳纤维增强金属基复合材料增材制造工艺[J]. 浙江大学学报(工学版), 2021, 55(11): 2084-2090.
[4] 吴志强,卫军,董荣珍. 石墨烯压阻复合材料及其在裂纹监测中的应用[J]. 浙江大学学报(工学版), 2020, 54(2): 233-240.
[5] 栾丛丛, 姚鑫骅, 刘丞哲, 傅建中. 碳纤维-热塑性复合材料三维打印及其自监测[J]. 浙江大学学报(工学版), 2017, 51(9): 1808-1814.
[6] 陈亮亮,祝长生,王萌. 碳纤维护套高速永磁电机热态转子强度[J]. 浙江大学学报(工学版), 2015, 49(1): 162-172.
[7] 王晓,姚晓莉,候鉴峰,范利武,徐旭,俞自涛,胡亚才. 氧化石墨烯水悬浮液的非等温结晶过程[J]. 浙江大学学报(工学版), 2014, 48(7): 1272-1277.
[8] 诸葛萍, 丁勇, 侯苏伟, 强士中. 新型CFRP筋锚具优化设计及疲劳性能试验[J]. 浙江大学学报(工学版), 2014, 48(10): 1822-1827.
[9] 王保俊, 毕刘新, 陈亮亮, 杨平西, 祝长生. 碳纤维绑扎表贴式高速永磁电机转子强度分析[J]. J4, 2013, 47(12): 2101-2110.
[10] 姚谏 朱晓旭 周延阳. 混凝土表层嵌贴CFRP板条的黏结承载力[J]. J4, 2008, 42(1): 34-38.
[11] 谢旭 张鹤 朱越峰 苟昌焕. CFRP拉索在横向风荷载作用下的振动特性[J]. J4, 2008, 42(1): 145-151.
[12] 张治成 谢旭 张鹤. 大跨度斜拉桥钢和碳纤维拉索设计安全系数[J]. J4, 2007, 41(9): 1443-1449.
[13] 黄宛真 张孝彬 卢荻 徐铸德 陈卫祥. 鱼骨状纳米碳纤维嵌脱锂性能的初步研究[J]. J4, 2006, 40(4): 624-628.
[14] 刘继忠 周晓军 华志恒. 碳纤维复合材料孔隙率的脉冲反射法超声衰减测试模型[J]. J4, 2006, 40(11): 1878-1882.
[15] 谢旭 高金盛 苟昌焕 黄剑源. 应用碳纤维索的大跨度斜拉桥结构振动特性[J]. J4, 2005, 39(5): 728-733.